Directed molecular evolution of fourth-generation cephalosporin resistance in

Wellington Moore
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd
Part of the Medical Sciences Commons

Recommended Citation

Moore, Wellington, "Directed molecular evolution of fourth-generation cephalosporin resistance in" (2011). Graduate Theses and Dissertations. 10107.
https://lib.dr.iastate.edu/etd/10107

Directed molecular evolution of fourth-generation cephalosporin resistance in Salmonella and Yersinia
by

Wellington Moore

Abstract

A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

Major: Biomedical Science (Pharmacology)

Program of Study Committee:
Steve Carlson, Major Professor
Timothy Day
Ronald Griffith

Iowa State University

Ames, Iowa
2011

TABLE OF CONTENTS

LIST OF FIGURES iii
LIST OF TABLES iv
ABSTRACT v
CHAPTER 1. INTRODUCTION 1
Review of B-Lactam antimicrobials. 1
Review of Cephalosporins 3
Review of Beta-lactamases 12
Review of Plasmids 15
Review of Bla-Cmy-2 16
Review of MnCl_{2} interference with DNA polymerase 18
Review of Rolling Circle Amplification 18
Aims of Project 19
CHAPTER 2. MATERIALS AND METHODS 21
Sensitivity screening 21
Cosmid removal 21
Error-prone Rolling Circle Amplification 23
Creation of electrocompetent bacteria 23
Transformation of electrocompetent bacteria 24
Electrophoresis. 24
PCR 25
Transformation of chemical-competent bacteria. 26
CHAPTER 3. RESULTS 27
CHAPTER 4. DISCUSSION 50
BIBLIOGRAPHY 51

LIST OF FIGURES

Figure 1. Penicillin 2
Figure 2. Carbapenems 2
Figure 3. Monobactams. 2
Figure 4. Cephalosporins 3
Figure 5. 7-ACA 3
Figure 6. Oxyimino-acetic acid 9
Figure 7. Ceftiofur sodium. 9
Figure 8. Cefotaxime 9
Figure 9. Cefixime 9
Figure 10. Ceftriaxone 10
Figure 11. Ceftazidime 10
Figure 12. Cefepime 11
Figure 13. Clavulanic Acid 13
Figure 14. Nucleotide sequence of $b l a_{\mathrm{CMY}-2}$. 17
Figure 15. Illustration of rolling circle amplification 19
Figure 16. Nucleotide sequence of wild type BLA CMY 2 and mutated variant. 28
Figure 17. Amino acid sequence of wild type BLA CMY 2 and mutated variant 34
Figure 18. Secondary structure of wild type BLA CMY 2 and mutated variant 37

LIST OF TABLES

Table 1. This table shows drugs from the four generations of cephalosporins
and their spectra of activity 5

Table 2. This table shows cephalosporin drugs with similar and dissimilar side chains at C-77

Table 3. This table shows cephalosporin drugs with similar and dissimilar side
chains at C-3 8
Table 4. This table shows the classification schemes for bacterial β-lactamases 14
Table 5. PCR thermal cycling protocol 25
Table 6. Mutations in bla-cmy-2 sequence conferring cefepime resistance. 27

Abstract

Cefepime is a fourth-generation cephalosporin approved by the FDA in 1996 (Barlow 2003). Few instances of cefepime resistance have been reported. This research used directed molecular evolution involving error-prone rolling circle amplification on plasmids containing the beta-lactamase gene designated as bla-cmy-2. This gene is believed to be responsible for the majority of the nontyphoidal Salmonella enterica cephalosporin antimicrobial resistance in this country (Daniels 2007). Plasmids were removed from Salmonella and Yersinia bacteria exhibiting resistance to the following third-generation cephalosporins: ceftiofur, cefotaxime, cefixime, ceftriaxone, and ceftazidime. The goals of this research were to identify bla-cmy-2 mutations that confer cefepime resistance. Error-prone rolling circle amplification yielded a mutation encoding cefepime resistance. This mutation altered the secondary structure in the region of the H 10 helix, which is a part of the catalytic site for extended-spectrum beta-lactamases. In summary, bla-cmy-2 mutations are sources of resistance for extended-spectrum betalactamases that can use fourth-generation cephalosporins as substrates in E. coli.

CHAPTER 1. INTRODUCTION

Review of beta-lactam antimicrobials

One of the first discovered antimicrobial agents was penicillin, which was isolated by Alexander Fleming in 1928 from Penicillium notatum. Penicillin was later discovered to be a beta-lactam drug. Beta-lactam drugs contain a four-member ring as part of their structure. This ring is referred to as the beta-lactam ring (Neu 1986). The bactericidal mode of action of beta-lactams is to bind to and inhibit penicillin-binding proteins (PBPs).

PBPs participate in the synthesis of the bacterial cell wall by catalyzing the maturation and cross-linking of peptidoglycans (Atrih 1999). PBPs are located on the outer surface of the cytoplasmic membranes of bacteria (Chalut 2001). Although all bacteria have these PBPs, there are significant species-dependent variations in their number and morphology. These variations lead to different levels of affinity between species of bacteria for beta-lactam antibiotics (Moya 2009). PBPs have several known enzymatic functions including peptidoglycan transpeptidase activity. The enzymatic function of peptidoglycan transpeptidase is to cross-link the peptidoglycans to form the bacterial cell wall (Mainardi 2005). PBPs are essential for cell survival and are the target of beta-lactam antibiotic therapy. Other enzymatic functions of PBP include carboxypeptidase and endopeptidase activities. Carboxypeptidase function is not fully understood and may be non-essential for bacterial life (Nelson 2001, Ghosh 2008). However, there is research indicating that the enzymatic functions of carboxypeptidase and endopeptidase may be responsible for the overall cell shape (Meberg 2004). When PBPs are identified in bacteria, they are labeled or numbered by their size, which can range from 35 to 120 kDa (Peddi 2009). Using their size, they are divided into low-molecular-mass and high-molecular-mass PBPs (Peddi 2009). The high-molecular-mass PBPs are more likely to have peptidoglycan transpeptidase activity (Peddi 2009).

Several different families of structures are referred to as beta-lactams antibiotics. Note the following structures:

Figure 1. Penicillin, the first beta-lactam drug discovered, consists of a beta-lactam ring and a thiazolidine ring. Side chains attach at "R."

Figure 2. Carbapenems consist of a beta-lactam ring and a modified thiazolidine ring. Carbapenems have three side chains: R^{1}, R^{2}, and R^{3}.

Figure 3. Monobactams consist of a solo beta-lactam ring and one side chain, R1.

Figure 4. Cephalosporins consist of a beta-lactam ring and a dihydrothiazine ring. Cephalosporins have two side chains: \mathbf{R}^{1} and R^{2}.

The cephalosporin group of beta-lactams was the focus of this research, and thus, they will be emphasized henceforth.

Review of Cephalosporins

Cephalosporin antibiotics originated with the 1945 discovery of Cephalosporium acremonium in the sewers of the Mediterranean island of Sardinia (Abraham 1979). From this fungus, dozens of antimicrobial agents have arisen.

There are five generations of cephalosporin antibiotics currently described. The synthesis of many of them starts with a 7-aminocephalosporanic acid (7-ACA) molecule (Nigam 2005).

7-ACA
Figure 5. 7-ACA.

7-ACA is synthesized by deacylation of cephalosporin-C (Nigam 2005).
Cephalosporin-C was the first cephalosporin isolated. The cephem nucleus consists of a
beta-lactam ring and a dihydrothiazine ring. Side chains that impart individual and unique bactericidal spectral and beta-lactamase resistance characteristics are attached at C-3 and C-7 (Neu 1986). The generational designation of different cephalosporins reflects the spectrum of activity. The first-generation cephalosporin spectrum includes gram-positive organisms (Merk 2009). The second-generation cephalosporin spectrum includes fewer gram-positive organisms and more gram-negative organisms than the first-generation cephalosporin spectrum. The second-generation drugs also have some activity against anaerobes (Merk 2009). The third- and fourth-generation cephalosporin spectra include more gram-negative organisms and fewer gram-positive organisms than the second-generation cephalosporin spectrum. They are recommended clinically for polymicrobial infections caused by gram-negative bacilli and gram-positive cocci (Merk 2009). Table 1 summarizes the generation of cephalosporins including examples and spectra.

Table 1. Drugs from the four generations of cephalosporins and their spectra of activity

First-generation
 cephalopsorins

Cefacetrile
Cefadroxil
Cephalexin
Cefaloglycin
Cefalonium
Cefaloridine
Cefalotin
Cefapirin
Cefatrizine
Cefazaflur
Cefazedone
Cefazolin
Cefradine
Cefroxadine
Ceftezole

Second-generation

cephalosporins

Cefaclor
Cefonicid
Cefprozil
Cefuroxime
Cefuzonam
Cefmetazole
Cefotetan
Cefoxitin

Spectrum

Gram-positive:
Less than first-generation cephalosporins

Gram-negative:

In addition to first-generation spectrum
Haemophilus influenzae,
Enterobacter aerogenes, and some Neisseria

Third-generation

cephalosporins

Cefcapene
Cefdaloxime
Cefdinir
Cefditoren
Cefetamet
Cefixime
Cefmenoxime
Cefodizime

Spectrum

Gram-positive:
Penicillinase-producing
methicillin-susceptible staphylococci
and streptococci

Gram-negative:

Including Proteus mirabilis,
some Escherichia coli, and
Klebsiella pneumoniae

Spectrum

Gram-positive:
Some third-generation drugs are
less than first- and second-
generation cephalsprins

Gram-negative:

3rd generation have broader spectrum then 1st or 2nd generation cephalsporins;

Table 1 continued

Cefotaxime
Cefovecin
Cefpimizole
Cefpodoxime
Cefteram
Ceftibuten
Ceftiofur
Ceftiolene
Ceftizoxime
Ceftriaxone
Cefoperazone
Ceftazidime
Including E. coli, Klebsiella, penicillin-resistant
N. gonorrhoeae and meningitis caused by,
pneumccci, meningococci, H. influenzae

Fourth-generation

cephalosporins

Cefclidine
Cefepime
Cefluprenam
Cefoselis
Cefozopran
Cefpirome
Cefquinome

Spectrum

Gram-positive:
Similar to first-generation cephalosporins

Gram-negative:

Increase over all spectrum, including CNS infections
and Pseudomonas aeruginosa

Table 2. Cephalosporin drugs with similar and dissimilar side chains at C-7

Cephalosporin drugs with similar side chains at	C-7		
	Group 1	Group 2	Group 3
Generations	\downarrow	\downarrow	\downarrow
First	Cefalotin	Cephradine	
		Cephalexin	
		Cefadroxil	

| Secon | |
| :--- | :--- | :--- |
| d | Cefoxitin |

Third	Ceftizoxime
	Cefotaxime
	Cefpodoxime
Fourth	Ceftriaxone
	Cefepime
	Cefpirome

Cephalosporin drugs with dissimilar side chains at C-7

Generations
First Cefazolin
Secon
d Cefotetan
Cefuroxime
Cefprozil
Cefmetazole
Third Cefoperazone
Cefdinir
Cefditoren
Cefixime
Ceftibuten
Ceftazidime
(source: Michael E. Pichichero, MD; Cephalosporins can be prescribed safely for penicillin-allergic patients; Journal of Family practice Feb 2006. vol.55, No.2)

Table 3. Cephalosporin drugs with similar and dissimilar side chains at C-3 ibidCephalosporin drugs with similar side chains at C-3

Fourth

ibidCephalosporin drug with dissimilar side chains at C-3

Generations
First Cefazolin

Second Cefprozil
Cefaclor

Third Cefpodoxime
Ceftibuten
Ceftriaxone
Ceftazidime

Fourth Cefepime
Cefpirome

Cephalosporin bactericidal activity results from a similarity in the structure of the beta-lactam ring and the D-alanyl-D-alanine extremity of nascent peptidoglycan (Mainardi 2005). This similarity in structure creates the competitive inhibition of PBPs, which facilitate the maturation and linking of peptidoglycans in bacterial cell wall synthesis (Mainardi 2005). This results in the inhibition of bacterial wall synthesis. Later generations of cephalosporins target gram-negative bacteria more than the gram-positive bacteria.

The third-generation cephalosporins used in this research include ceftiofur, cefotaxime, cefixime, ceftriaxone, and ceftazidime (Figs 6-11). Large side chains similar
to oxyimino moieties may be responsible for some of the increased resistance thirdgeneration cephalosporins exhibit to enzymatic destruction by beta-lactamases.

Figure 6. Oxyimino-acetic acid.

Figure 7. Ceftiofur sodium.

D07647

Figure 8. Cefotaxime.

Figure 9. Cefixime.

Cefixime is considered the first third-generation oral cephalosporin (Roche 1989). The structural modification that enabled per os administration was the addition of a vinyl group at C-3 (Roche 1989). The third-generation cephalosporin antimicrobial
characteristics possessed by cefixime result from an aminothiazole ring and an Roxyimino group at C-7 (Roche 1989). Cefixime has been clinically recommended for the treatment of lower respiratory tract, ear-nose-throat, and urinary tract infections (UTIs) (Roche 1989). Cefpodoxime is the only other oral third-generation cephalosporin, and it is structurally similar to cefixime.

Figure 10. Ceftriaxone.

Ceftriaxone has an oxyimino group at C-7 and a thiadiazolylthiomethyl group at C-3 (Reiner 1986). Ceftriaxone has a long half-life of 8 h , and it was the first beta-lactam recommended for once-a-day administration (Reiner 1986).

Figure 11. Ceftazidime.

The addition of a quaternary ammonium group at the $\mathrm{C}-3^{\prime}$ position is the modification that distinguishes third-generation and fourth-generation cephalosporins (Garau 2008). Fourth-generation cephalosporins are zwitterionic compounds (Garau
2008). This implies electrical neutrality and polar characteristics ($a+$ end and $a-$ end). These attributes enables fourth-generation cephalosporins to rapidly penetrate the outer membrane of gram-negative bacteria (Garau 2008). In addition, research has demonstrated that beta-lactamase enzymes have lower affinity for fourth-generation cephalosporins (Garau 2008). This low affinity for fourth-generation cephalosporins results in a lower rate of hydrolysis by these enzymes. This fact, together with rapid penetration into the cell, results in a decrease in the rate at which bacteria become resistant to fourth-generation cephalosporins (Giamarellou 1999).

Figure 12. Cefepime -fourth.
The side chains that distinguish cefepime are an aminothiadiazolyl group at C-7' and a quaternary ammonium at position-3 (Watanabe 1996).

Cefepime received FDA approval in 1996 (Barlow 2003). Structurally, it is most similar to a third-generation cephalosporin, ceftazidime (Barlow 2003). These two cephalosporins have noticeably different mechanisms of resistance and susceptibility to bacteria. As would be expected, there are many examples in which cefepime is more resilient than earlier cephalosporins. The greater spectrum of activity of cefepime compared to that of ceftazidime may result from factors including a significantly lower affinity for plasmid-mediated $\mathrm{AmpC} \beta$-lactamases than ceftazidime and that ceftazidime is hydrolyzed by β-lactamases to a greater degree than cefepime (Endimiani 2008).

Cefepime was approved for the treatment of moderate to severe infections including pneumonia, uncomplicated and complicated UTIs, soft tissue and skin infections, intra-abdominal infections, and febrile neutropenia (Endimiani 2008). A low frequency of spontaneous resistance mutations is described for cefepime (Endimiani 2008). This description resulted from research in which wild-type P. aeruginosa strains required an average of 30 passages of cefepime-selected isolation for resistance to
develop, in comparison to $15.2,18.0$, and 3.5 passages for cefpirome, ceftazidime, and cefotaxime, respectively (Endimiani 2008, Carsenti-Etesse 2001).

The mechanisms by which cefepime resistance has developed have rarely been bacteria-specific. Enterobacteriaceae such as E. coli and Klebsiella species have infrequently developed resistance by either producing class A extended-spectrum β lactamases (ESBLs) or class A or B carbapenemases (Endimiani 2008). P. aeruginosa usually acquire cefepime resistance through a combination of tactics. First, P. aeruginosa hyper-produce class C chromosomal enzymes, e.g., AmpC. Second, P. aeruginosa will upregulate their efflux pumps and remove cefepime (Endimiani 2008). To a lesser extent, there are isolated geographic reports of cefepime-resistant P. aeruginosa producing metallo- β-lactamases such as CTX-M (Endimiani 2008).
Acinetobacter baumannii has exhibited cefepime resistance. There are three mechanisms attributed to A. baumannii resistance to cefepime: hyper-production of chromosomal OXA-51/69-like carbapenemases, activation of efflux pumps such as AdeABC, and porin exchange (Endimiani 2008).

Review of $\boldsymbol{\beta}$-lactamases

The hope of discovering a panacea felt after the discovery of the antimicrobial action of beta-lactam drugs was soon dashed by the appearance of bacteria possessing innate resistance. The means of resistance to beta-lactam drugs by these bacteria was soon discovered to be the enzymatic destruction of the drugs by a number of different enzymes called beta-lactamases. In keeping with the discovery of new forms of betalactam antimicrobial drugs, bacteria have employed or evolved beta-lactamase enzymes that eliminate them.

The first identification of a beta-lactam-destroying enzyme was made in 1940 (Sutherland 1990). These enzymes are as a group referred to as beta-lactamases. The mechanism by which beta-lactamases destroy beta-lactam antimicrobials is to hydrolyze the beta-lactam ring (Bush 1988, Mainardi 2005). Once the ring is destroyed, their antimicrobial activity is lost. In an attempt to overcome the effects of this enzyme, a screening for naturally occurring beta-lactamase inhibitors was performed (Sutherland
1990). From this research, it was found that clavulanic acid from Streptomyces clavuligerus is a beta-lactamase inhibitor (Sutherland 1990).

Figure 13. Clavulanic acid.
From the structure in Figure 13, it is clear that clavulanic acid is related to the beta-lactam family (Kim 2009). It, however, has little or no antimicrobial activity (Kim 2009). It functions as a competitive inhibitor of beta-lactamase (Kim 2009). One of the criteria used to categorize different beta-lactamases is whether the beta-lactamase is inhibited by clavulanic acid. Other beta-lactamase inhibitors have been discovered including sulbactam and tazobactam (Hedburg 1992). However, their spectrum of activity is not used in the classification of beta-lactamases (Bush 1995).

The susceptibility of beta-lactamase to clavulanic acid, together with the group of beta-lactams being eliminated and the molecular class of the enzyme, is used as a criterion for classification (Bush 1995). There are three major groupings of betalactamases (Bush 1995). Group 1 includes enzymes labeled cephalosporinases; this group hydrolyzes cephalosporins and exhibits resistance to clavulanic acid (Bush 1995). Group 2 includes penicillinases, cephalosporinases, and broad-spectrum beta-lactamases that can potentially eliminate penicillins, cephalosporins, and other beta-lactam groups (Bush 1995). Group 2 beta-lactamases are generally sensitive to clavulanic acid (Bush 1995). Group 3 beta-lactamases include metallo-beta-lactamases and can eliminate penicillins, cephalosporins, and carbapenems (Bush 1995). Group 3 enzymes are resistant to clavulanic acid (Bush 1995).

Table 4. Classification schemes for bacterial $\boldsymbol{\beta}$-lactamases

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bush-Jacoby- \& 1989 Bush \& Richmond- \& Mirsuhashi- \& Molecular \& Preferred \& \multicolumn{2}{|l|}{Inhibited by} \& \multirow{3}{*}{Representative enzymes} \\
\hline Medeiros \& Group (44) \& Sykes \& Inoue \& Class \& Substrates \& CA \& EDTA \& \\
\hline Group \& \& Class (253) \& Type (194)a \& (2, 121, 132) \& \& \& \& \\
\hline 1 \& 1 \& Ia, Ib, Id \& CSase \& C \& Cephalosporins \& - \& - \& AmpC enzymes bacteria; from gram-negative MIR-1 \\
\hline 2a \& 2a \& Not included \& PCase V \& A \& Penicillins \& + \& - \& Penicillinase from gram-positive bacteria \\
\hline 2b \& 2b \& III \& PCase I \& A \& Penicillins, Cephalsporins \& + \& - \& TEM-1, TEM-2, SHV-1 \\
\hline 2 be \& 2 b \& Not included except K1 in class IV \& CXase \& A \& \begin{tabular}{l}
Penicillins, narrow spectrum, \\
and extended spectrum cephalosporins, monobactams
\end{tabular} \& + \& - \& \begin{tabular}{l}
TEM-3 to TEM-26, \\
SHV-2 to SHV-6, \\
Klebsiella oxytoca K1
\end{tabular} \\
\hline 2 br \& Not included \& Not included \& Not included \& A \& Penicillins \& \(\pm\) \& - \& TEM-30 to TEM-36, TRC-1 \\
\hline 2c \& 2c \& II, IV \& PCase IV \& A \& Penicillins, carbenicillin \& + \& - \& PSE-1, PSE-3, PSE-4 \\
\hline \(2 d\)
\(2 e\) \& \(2 d\)
\(2 e\) \& V
Ic \& \begin{tabular}{l}
PCase II, \\
PCase III \\
CXase
\end{tabular} \& D
A \& Penicillins, cloxacillin \& \(\pm\)

+ \& - \& | OXA-1 to OXA-11, PSE-2 (OXA-10) |
| :--- |
| Inducible cephalsporinases |

\hline 2 f \& Not included \& Not included \& Not included \& A \& Penicillins, cephalsporins, carbapenems \& + \& - \& | from Proteus vulgaris NMC-A from Sme-1 from |
| :--- |
| Enterobacter cloacae, Serratia marcescens |

\hline 3 \& 3 \& Not included \& Not included \& B \& Most β-lactams, including carbapenems \& - \& + \& | I1 from Xanthomonas maltophilia, CcrA from |
| :--- |
| Bacteroides Fragilis |

\hline 4 \& 4 \& Not included \& Not included \& ND ${ }^{\text {a }}$ \& Penicillins \& - \& ? \& | Penicillinase from |
| :--- |
| Pseudomonas cipacia |

\hline \multicolumn{9}{|l|}{| ${ }^{\text {a }}$-Csase, cephalsporinase; Pcase, penicilinase; CXase, cefuroxime hydrolyzing β-lactamase. |
| :--- |
| ${ }^{\text {b }}$-CA, clavulanic acid |
| ${ }^{\mathrm{c}}$-ND, not determined |}

\hline
\end{tabular}

(Source: reproduced from Bush K, Jacoby GA, Medeiros AA.1995. "A functional classification scheme for beta-lactamases and its correlation with molecular structure."

Antimicrob Agents Chemother. 1995;39: 1211-33)
This research involved a group 1 beta-lactamase termed AmpC-bla-cmy-2.

Interestingly, the first beta-lactamase enzyme discovered was an AmpC enzyme (Jacoby 2009). The genetic sequence of $A m p C$ beta-lactamases from E. coli was presented in research in 1981 (Jacoby 2009). Since the $A m p C$ sequence of E. coli was first identified, similar sequences with beta-lactamase activity have been identified and cataloged in different genera and species (Jacoby 2009). However, variability in AmpC beta-lactamase genes has been identified even within species (Jacoby 2009). AmpC betalactamases can hydrolyze the beta-lactam ring of penicillins but are more effective at eliminating cephalosporins (Jacoby 2009). One of the factors attributed to AmpC activity is its high affinity for beta-lactams (Jacoby 2009). AmpC is classified as a Class C enzyme (Jacoby 2009). Class C enzymes have the advantage of a wider active site for catalysis (Jacoby 2009). This fact is also believed to aid in the increased ability of AmpC to deal with cephalosporins possessing large side chains (Jacoby 2009).

One source stated that a beta-lactamase was first attributed to a sequence on a plasmid in 1976; however, no material remains from this experiment to verify its validity (Phillippon 2002). Subsequently, it has been confirmed that sequences that lead to betalactamase synthesis can be transferred between bacteria in plasmids. One grouping of these plasmid-based AmpC beta-lactamases has been classified as cmy (Jacoby 2009). AmpC bla-cmy-2 was used in this research (Jacoby 2009).

Review of Plasmids

Bacteria have several types of DNA. One type is referred to as plasmids. Plasmids are circular pieces of DNA that can be transferred from one bacterial cell to another, thereby spreading antibiotic resistance (Berg 2007). Plasmids are spread between bacteria in two known methods. The first method is by a process referred to as "bacterial conjugation," which involves the pilus transfer of genes (Nakano 2004). A second method in which a plasmid can be transferred from one bacterium to a second is transformation. In the laboratory, the naturally occurring process of transformation has been elaborated to involve electrocompetent cells and chemically competent cells (Nakano 2004). Cell transformation using electrocompetent cells and chemically competent cells were used in this research.

Review of Bla-Cmy-2

The essence of this research is centered on whether a particular beta-lactamase can be induced to confer cefepime resistance to bacteria. This beta-lactamase is cmy-2 The cmy-2 enzyme is of particular interest, as it hydrolyzes cephalosporin beta-lactam drugs. In addition, bla-cmy- 2 has been found on plasmids. This fact means cephalosporin resistance can be transformed between bacteria. This is believed to be responsible for the majority of the nontyphoidal Salmonella enterica cephalosporin antimicrobial resistance in this country (Daniels 2007). The sequence of bla-cmy-2 found in plasmids is thought to have originated from the chromosomal DNA of Citrobacter freundii (Daniels 2007). The bla-cmy-2 sequence in plasmids consists of 1146 nucleotides, leading to 381 amino acids (Bauernfeind 1996). Cmy-2 is a class C beta-lactamase (Bauernfeind 1996). Transcription of plasmid-mediated bla-cmy-2 is not activated by a catabolic operon, as it does not contain the AmpR sequence (Nakano2004). There are references suggesting that bla-cmy-2 transcription may be activated in response to the promoter region ISEcp1 or ISEcp1B (Lartigue 2006).
240
MNHACAQCAAGGAAAATOCCATGCGCATTTTGCOCGTCOITOCTOCAOOCNTOCAAOCTT
FIG. 3. Nucleotide sequence of the bla $_{\text {CMY-2 }}$ (pMVP-2-1) gene. The de-
duced amino acid sequence of CMY-2 is shown in the lines below the nucleotide
triplets. Amino acids of the signal peptide are in lowercase letters; the putative
cleavage site of signal peptidase is indicated by an arrow. The β-lactamase active
site S-V-S-K (64 to 67), the conserved triad K-T-G (315 to 317), and the class
C-typical motif Y-X-N (150 to 152) are underlined. Possible promoter (-35 and
-10) and the ribosome-binding site (RBS) upstream the start codon are under-
lined. $\mathbf{\nabla}$ marks the end of sequence homology to $a m p C$ of C. freundï. A termi-
nator hairpin following the stop codon is marked by two arrows.

Figure 14. Nucleotide sequence of $\boldsymbol{b l a}_{\mathrm{CMY}-2}$
(source: reproduced from A Bauernfeind, I Stemplinger, R Jungwirth and H Giamarellou; Characterization of the plasmidic beta-lactamase CMY-2, which is responsible for cephamycin resistance; Antimicrobial Agents and Chemotherapy, Jan 1996, 221-224, Vol 40, No. 1)

Review of $\mathbf{M n C l}_{2}$ interference with DNA polymerase

A 2004 article describing the use of manganese in conjunction with error-prone rolling circle amplification states that manganese ions reduce the fidelity of DNA polymerase by biasing the deoxyribonucleotide concentration (Fujii 2004). Possible causes for this reduced fidelity may result from the observation that in the presence of manganese, the dissociation constant has been reported to decrease 30 -fold "such that there is little regard for the instructions provided by the templating base" (Frank 2007). A second possible cause may be that the proofreading capability of DNA polymerase is compromised, which would result in unrepaired mutations. There are three subunits of DNA polymerase III, alpha, theta, and epsilon, with the latter being responsible for the exonuclease proofreading activity (Hamdan 2002). The efficiency of hydrolysis required for exonuclease proofreading activity is altered on the basis of the divalent metal present, namely magnesium versus manganese (Hamdan 2002).

Review of rolling circle amplification

Rolling circle amplification or rolling circle replication is the natural process by which plasmids and some circular viruses are synthesized (Dean 2001). In the 1990s, this natural process had been modified to make it a means of laboratory circular DNA amplification (Fuji 2006). Steps in this process include adding primers to an existing circular piece of DNA (Dean 2001). These primers are resistant to the exonuclease or DNA repair mechanism of the DNA polymerase used (Dean 2001). The DNA polymerase used (psi29 DNA polymerase) is highly processive or strongly attached to the template strand named (Dean 2001). The DNA polymerase attaches at the exonuclease resistant primers on the circular DNA and begins to assemble nucleotides (Dean 2001). As the polymerase reads the circular DNA template, it reaches the next primer (Dean 2001). Other less processive DNA polymerases would stop at this point, but the psi29 DNA polymerase stays attached to the template and continues to assemble nucleotides
until the available nucleotides for assembly are depleted (Dean 2001). The result is a long double-strand of nucleotide repeats of the circular DNA and the primer (Dean 2001). Additional psi 29 DNA polymerases attach at these new primers and start to assemble nucleotides of only the synthesized strand (Dean 2001). This leads to an exponential increase in the repeated strands (Dean 2001). The repeated strands are referred to as concatemers (Fuji 2006). Concatemers reform into a circle by means of intramolecular homologous recombination (Fuji 2006).

Figure 15. Illustration of rolling circle amplification.

Aims of the project

Bacterial resistance to cefepime, a fourth-generation cephalosporin, has infrequently been documented. The aim of this research is to use directed molecular evolution to predict possible mutations to the beta-lactamase cmy-2 that will confer bacterial resistance to cefepime and possibly other fourth-generation cephalosporins.

This research involved the use of error-prone rolling circle amplification to modify the genetic sequence of AmpC Bla-Cmy-2 to anticipate possible mutations resulting from natural evolution that will enable it to hydrolyze fourth-generation cephalosporins. In this pursuit, the AmpC-carrying plasmids that had displayed thirdgeneration cephalosporin resistance were isolated from S. enterica var Typhimurium DT104 strains $1441,3453,5317,7330,7599,8501$, and 9853, Salmonella 968, and S. enterica var St Paul. Mutagenesis by error-prone rolling circle amplification was performed on these plasmids. Electrotransformation of these plasmids into E. coli, Salmonella, Yersinia, and Proteus was followed by the sensitivity testing of a fourthgeneration cephalosporin, cefepime, at its breakpoint.

CHAPTER 2. MATERIALS AND METHODS

Bacteria screening sensitivity in 96-well plates

Ceftiofur, cefotaxime, cefixime, ceftriaxone, cefovecin, cefepime, and cefozopran were attained from commercial sources. Breakpoints were established by CLSI (REF). The following strains were used: S. enterica var Typhimurium DT104 strains 196, 247, $799,1441,3673,3453,4430,5852,5317,5221,7599,7356,7330,8151,8501,9853$, and 10452, Salmonella 968, and S. enterica var St Paul.

Antibiotic sensitivity was assayed using 96-well plates. Bacteria were exposed to the antibiotics at the concentrations given below in lysogeny broth (LB). Incubation occurred for 24 h in an orbital shaker at $37^{\circ} \mathrm{C}$.

```
ceftiofur - 1, 2, 4, 8, 16, 32, 64, 128 \mug/ml
cefotaxime - 4, 8, 16, 32, 64, 128, 256, 512 \mug/ml
cefixime - 1, 2, 4, 8, 16, 32, 64, 128 \mu\textrm{g}/\textrm{ml}
ceftriaxone - 1, 2, 4, 8, 16, 32, 64, 128 \mug/ml
cefovecin-1, 2, 4, 8, 16, 32, 64, 128 \mug/ml
cefepime - 2, 4, 8, 16, 32, 64,128, 256 \mu\textrm{g}/\textrm{ml}
cefozopran-1, 2, 4, 8, 16, 32, 64, 128 \mug/ml
```


Cosmid removal-Qiagen large-construct kit

Using the Qiagen large-construct kit, cosmids from the following microbes were removed: S. enterica var Typhimurium DT104 strains 1441, 3453, 5317, 7330, 7599, 8501, and 9853, Salmonella 968, S. enterica var St Paul, and Yersinia 968. In addition to the Qiagen large-construct kit, adenosine triphosphate (ATP) disodium salt was purchased. The following procedure was performed individually on each of the above bacteria. Bacteria were statically grown in 500 ml of commercially purchased LB. After 24 h , LB was transferred into $10-50-\mathrm{ml}$ falcon tubes and centrifuged at 4100 rpm (limit of centrifuge) for 15 min . Supernatant was decanted, and tubes left inverted to drain. Ten milliliters of buffer P1with RNAse A were used to re-suspend all 10 bacterial cell pellets (RNase A will digest any RNA present during the alkaline lysis, which is the next step). Twenty milliliters of Buffer P2 were next added. Buffer P2 contains 200 mM NaOH and 1% sodium dodecyl sulfate (SDS; NaOH lyses the bacterial cells, SDS aids in
lysis by solubilizing the phospholipid and protein components of the cell membrane). After $5 \mathrm{~min}, 20 \mathrm{ml}$ of chilled buffer P3 were added (buffer P3 is acidic potassium acetate; its role is to neutralize the lytic action of buffer P2). After 10 min of incubation on ice, the suspension was centrifuged at 4100 rpm for 30 min . Following centrifugation, the lysate was filtered through a supplied filter (this filtering was done to remove any particulate material that may hinder complete exonuclease action in subsequent steps). The DNA was then precipitated from the lysate by adding 36 ml of isopropanol. This filtered lysate was then centrifuged at 4100 rpm for 30 min . Following centrifugation, the supernatant was carefully decanted. The DNA pellet was then washed by adding 2.5 ml of 70% ethanol to each tube, followed by centrifugation at 4100 rpm for 15 min and careful decantation. This step was repeated. Tubes were then air-dried for 3 min . The resulting DNA pellet dissolved in 4.75 ml of buffer EX. The DNA was then incubated with $200 \mu 1$ of ATP-dependent exonuclease and $300 \mu 1$ of ATP solution. This step resulted in digestion of all types of DNA other than super-coiled DNA. The tube was placed in a water bath at $37^{\circ} \mathrm{C}$ for 1 h . Then, its content containing the digested DNA and the intact tightly coiled DNA was transferred to a sterile tube. Ten milliliters of QS buffer then were added to this sterile tube. A Qiagen-tip 500 elution column was primed with 10 ml of QBT buffer. The tube containing the DNA and QS buffer was then applied to the elution column and allowed to run through the column. The DNA is theoretically in the column, and 30 ml of buffer QC were then applied to the column to rinse away any impurities other than the intact tightly coiled DNA. The elution column was placed over a fresh sterile tube, and 15 ml of buffer QF prewarmed to $65^{\circ} \mathrm{C}$ were applied. The intact DNA was eluted by buffer QF. Isopropanol (10.5 ml) was added, and the tube was centrifuged at 4100 rpm for 30 min . Supernatant from the pellet containing only intact tightly coiled DNA was carefully decanted. Five milliliters of 70% ethanol were added, and the tube was centrifuged at 4100 rpm for 15 min . Supernatant was carefully decanted from the DNA pellet, which was dried for 10 min . One hundred microliters of diethylpyrocarbonate $\mathrm{H}_{2} \mathrm{O}$ were added to re-dissolve the pellet.

Rolling circle amplification w $\mathbf{M n C l}_{2}$-GE Healthcare Life Science illustra TempliPhi 100/500 DNA Amplification Kit

Cosmids from the following bacteria underwent rolling circle amplification with MnCl_{2} : Yersinia 968, Salmonella 968, and S. enterica var Typhimurium DT104 strains 1441, 3453, 5317, 7330, 7599, and 9853. A GE Healthcare Life Science illustra Templiphi 100/500 DNA Amplification Kit was used in this project. The amplification kit consists of three components: a sample buffer, a reaction buffer, and an enzyme mix. The sample buffer consists of DNA polymerase primers. These primers are resistant to the exonuclease proofreading activity of DNA polymerase. Their function is to provide an attachment and initiation site for DNA polymerase. The reaction buffer consists of salts and free deoxynucleotides in a solution with a pH that supports DNA polymerase activity. The deoxyribonucleotides are the nucleotides that will be used to assemble new strands. The final part of the kit is the enzyme mix. The enzyme mix has the highly processive DNA polymerase psi 29 and also contains more random hexamers.

Each of the cosmids from the aforementioned bacteria was individually amplified in the following manner. Five microliters of the sample buffer were placed in the reaction tube followed by the addition of $0.5 \mu 1$ of the individual bacterial cosmid. The reaction tube was then sealed and heated to a temperature of $95^{\circ} \mathrm{C}$ for 3 min , followed by cooling to $4^{\circ} \mathrm{C}$. In a second tube, $5 \mu \mathrm{l}$ of the reaction buffer and $0.2 \mu \mathrm{l}$ of the enzyme mix were combined. To this was added $1 \mu 1$ of $1.5 \mathrm{mM} \mathrm{MnCl}_{2}$. The two reaction tubes were placed on ice for 5 min , and then their contents were combined. This combination was then kept at $30^{\circ} \mathrm{C}$ for 18 h (by this time, all of the deoxyribonucleotides are depleted). The reaction tube was then heated to $65^{\circ} \mathrm{C}$ for 10 min and then cooled to $4^{\circ} \mathrm{C}$. This was done to inactivate the psi29 DNA polymerase.

Electrocompetent cell creation

The following electrocompetent cells were synthesized: Salmonella, Yersinia, E. coli, and Proteus. Individually, 1 ml of each of the following microbes was added to 1 L of LB. The LB was statically incubated at $30^{\circ} \mathrm{C}$ for 18 h . After incubation, 40 ml of culture were added to $20-50-\mathrm{ml}$ falcon tubes. Tubes were centrifuged at 4100 rpm for 5 \min. The supernatant was decanted, leaving cellular pellets. Cellular pellets were re-
suspended in 40 ml deionized $\mathrm{H}_{2} \mathrm{O}$. Tubes were re-centrifuged at 4100 rpm for 5 min . Supernatant was decanted, leaving cellular pellets. Cellular pellets were re-suspended in 20 ml deionized $\mathrm{H}_{2} \mathrm{O}$. Tubes were re-centrifuged at 4100 rpm for 5 min . Supernatant was decanted, leaving cellular pellets. Cellular pellets were re-suspended in 1 ml of 40% glycerol. Glycerol-suspended cells were aliquoted into $1-\mathrm{ml}$ microtubes and stored at $-80^{\circ} \mathrm{C}$.

Electrocompetent cell transformation

Using an electroporator, cosmids that underwent error-prone rolling circle amplification were transformed into electrocompetent cells of Salmonella, E. coli, Yersinia, and Proteus. Electrocompetent cells and electroporation cuvettes were stored at $-80^{\circ} \mathrm{C}$. Electrocompetent cells and cuvettes were transferred from $-80^{\circ} \mathrm{C}$ storage to the work bench on ice. To previously aliquoted $50 \mu \mathrm{l}$ of electrocompetent cells, $2 \mu \mathrm{l}$ of cosmids from the aforementioned bacteria were added. This combination was transferred into a designated electroporation cuvette. The cuvette was placed inside an electropulsator pre-set at $200 \Omega, 2.5 \mathrm{kV}$, and $25 \mu \mathrm{~F}$ for a $0.2-\mathrm{cm}$ cuvette (Chaveroche 2000). Electricity was discharged. Five hundred-fifty microliters of super optimal broth with Catabolite repression (SOC; bacterial nutrient solution) were rapidly added to the cuvette. The contents of the cuvette were transferred back to the original microtube and incubated for 2 h . Following incubation, $200 \mu \mathrm{l}$ of transformed cells were transferred into three wells of a 96-well plates containing $200 \mu 1$ of cefepime ($64 \mu \mathrm{~g} / \mathrm{ml}$).

Electrophoresis

Electrophoresis was used twice in this project: first to determine whether a molecule of the size of the cosmids was present following cosmid removal from the bacteria and later determine whether a molecule the size of the desired product was present after polymerase chain reaction (PCR). The size of the expected PCR product is known as the sequence assembled by Taq polymerase and is defined by specific primers. All supplies used here were commercially purchased. For this research, 0.5% gel was used for our electrophoresis. Gel was synthesized by combining 0.2 g of agarose with 40 ml of TAE buffer in a $100-\mathrm{ml}$ Erlenmeyer flask. Thermal agitation aided in dissolving
the agarose. After dissolution was complete, the liquid was cooled at room temperature for 5 min and then transferred to the electrophoresis plastic mold. One drop of ethidium bromide (EtBr) was added. A well mold was placed in the appropriate slot. Following gel solidification, the DNA sample and corresponding ladder were placed in the designated wells. The cap was placed, and the current was set at 88 V for 45 min . After the allotted time, the gel was examined under ultraviolet light, and the extent of molecule migration was determined by the EtBr florescence. DNA samples were compared to the ladder. Larger molecules migrate slower, whereas smaller molecules migrate faster.

PCR

PCR was used in this research to amplify the bla-cmy-2 sequence that conferred cefepime resistance. PCR is a method of amplifying nucleotide sequences utilizing a DNA polymerase that has high temperature tolerance. This is significant because the DNA double-strands are melted to allow DNA polymerase (Taq) access to a singlestranded template. Two microliters each of the established forward and reverse primers were added to $2 \mu \mathrm{l}$ of the cosmid. These primers defined the nucleotide sequence for blacmy2. To this were added $5 \mu \mathrm{l}$ of Expand ${ }^{\mathrm{TM}} 10 \times$ PCR Buffer, $2 \mu \mathrm{l}$ of deoxyribonucleotides, $2 \mu 1$ of $2.25 \mathrm{mM} \mathrm{MgCl}_{2}, 0.5 \mu 1$ of Taq DNA polymerase, and 35.5 $\mu \mathrm{l}$ of diethylpyrocarbonate $\mathrm{H}_{2} \mathrm{O}$. The thermal cycling protocol is shown in Table 5.

Table 5. PCR thermal cycling protocol

STEP	TIME	TEMPERATURE	CYCLE
Initial			
Denaturation	2 minutes	$94^{\circ} \mathrm{C}$	$1 \times$
Denaturation	15 seconds	$94^{\circ} \mathrm{C}$	
Annealing	1 minute	$56^{\circ} \mathrm{C}$	$25 \times$
Extension	5 minutes	$68^{\circ} \mathrm{C}$	
Final Extension	7 minutes	$72^{\circ} \mathrm{C}$	$1 \times$

Denaturation, or melting, of the double strands occurred at $94^{\circ} \mathrm{C}$. Taq polymerase attached to the template strand at lower temperatures and produced the nucleotide sequences defined by the primers. The presence of product was confirmed by gel electrophoresis.

Transformation of plasmids using chemically competent cells

The sequence containing the mutated bla-cmy-2, after being amplified using PCR, was cloned into a pCR XL-TOPO vector and then transformed into chemically competent cells. To 1μ of the PCR-amplified sequence were added $3 \mu 1$ of $\mathrm{H}_{2} \mathrm{O}, 1 \mu \mathrm{l}$ of salt solution, and 1μ l of the pCR-XL-TOPO vector. This mixture was kept at room temperature for 5 min , followed by 5 min on ice. Independently, $2 \mu \mathrm{l}$ of $0.5 \mathrm{M} \beta$ mercaptoethanol were added to a vial of TOP10 chemically competent cells. To this vial, $2 \mu \mathrm{l}$ of the aforementioned combination of the PCR product with the vector were added. This mixture was placed on ice for 30 min . The competent cells were then heat-shocked at $42^{\circ} \mathrm{C}$ for 30 s . Following the heat shock, the vial was placed in ice for 2 min . Two hundred fifty microliters of SOC were added. Cells were left for 2 h at $37^{\circ} \mathrm{C}$ under 300rpm agitation. Cells were then streaked onto a agar plate containing ampicillin (the ampicillin in the agar prevents the growth of invasive bacteria not possessing the pCR-XL-TOPO vector containing the operon that confers ampicillin and kanamycin resistance). Following overnight incubation, 30 colonies were selected. These colonies were placed in $1-\mathrm{ml}$ tubes containing $50 \mu \mathrm{~g} / \mathrm{ml}$ kanamycin. Kanamycin was again added to the tubes in an effort to prevent the growth of invasive bacteria not possessing the pCR-XL-TOPO vector containing the operon that confers kanamycin resistance. In this manner, contaminants or bacteria not expressing the vector with the bla-cmy-2 sequence of interest were eliminated.

After confirming that one plasmid contained the bla-cmy-2 gene, the plasmid insert was subjected to DNA sequencing by the DNA Facility at Iowa State University.

CHAPTER 3. RESULTS

Transformation of the bla-cmy-2 sequence-containing plasmids that had undergone error-prone rolling circle amplification from the aforementioned bacteria was repeated until a strain displayed resistance to cefepime $32 \mu \mathrm{~g} / \mathrm{ml}$. Mutated plasmids underwent transformation into electrocompetent cells of E. coli, Salmonella, Proteus, and Yersinia. This was done in search of a plasmid containing a mutated bla-cmy-2 sequence that would confer cefepime resistance. After repeating this transformation 15 times, a bacterium displayed growth at $32 \mu \mathrm{~g} / \mathrm{ml}$. Electrotransformation of the plasmid from Salmonella 968 into E. coli resulted in cefepime resistance of minimum inhibitory concentration (MIC) $>64 \mu \mathrm{~g} / \mathrm{ml}$. The breakpoint of cefepime is $32 \mu \mathrm{~g} / \mathrm{ml}$. In the initial susceptibility test, the original Salmonella 968 had an MIC $\leq 2 \mu \mathrm{~g} / \mathrm{ml}$.

Sequencing of the bla-cmy 2 nucleotide sequence of E. coli/Salmonella 968 revealed the five mutations listed in Table 6.

Table 6. Mutations in the bla-cmy-2 sequence conferring cefepime resistance

$\frac{\text { Nucleotide }}{27}$			
		Amino Acid Change	
150	Silent		
180		Silent	
833		Silent	
941		277 arginine \rightarrow leucine	non-conserved
		313 alanine \rightarrow valine	Conserved

The mutations occurred at nucleotides 27 (silent), 150 (silent), 180 (silent), 833, and 941. Silent mutations do not alter the amino acid sequence of the final protein. The guanine was replaced by thymidine at nucleotide 833 (this resulted in arginine being replaced by a leucine at amino acid 277; this is a non-conserved substitution). The cytosine was replaced by thymidine at nucleotide 941 (this resulted in alanine being replaced by valine at amino acid 313 ; this is a conserved substitution).

The observation that an amino acid at a particular location in a sequence is common to all strains or varieties of an organism implies that it is vital to the function and survival of that organism.

NUCLEOTIDE SEQUENCE OF WILD TYPE BLA CMY 2 AND MUTATED

VARIANT

```
Monday, February 15, 2010 4:24 PM
```

	10																			
WWMoore	A	G	A	G	A	A	A	A	A	A		G			A	G		G	G	
bla^cmy-2 Salmor	A	G	A	G	A	A	A	A	A	A		G	T		A	G	T	G	G	
consensus	A	G	A	G	A	A	A	A	A	A		G			A	G	:	G	G	Y

WWMoore
bla^cmy-2 Salmor consensus

blacmy 2 WWM v wt (nucleotide)
Page 3
Monday, February 15, 2010 4:24 PM

bla^cmy-2 Salmo
consensus GIGEA AIIGEGEITITAGEGEA|GTICITIG K GITA A

bla^cmy-2 Salmo

 consensusblacmy 2WWM v wt (nucleotide)
Page 5
Monday, February 15, 2010 4:24 PM

| blacmy 2WWM v wt (nucleotide) | |
| :--- | :--- | :--- |
| Monday, February 15,2010 4:24 PM | Page 6 |

1140									
WWMoore	A	A	G	G	A	A	A	A	A
bla^cmy-2 Salmot	A	A	G	G	A	A	A	A	A
consensus	A	A	G	G	A	A	A	A	A

Figure 16. Nucleotide sequence of wild-type BLA CMY 2 and mutated variant.

VARIANT

```
Mlacmy2 WWM v wenderuary 15, 2010 4:32 PM
```


WWM
Bla^cmy-2 wt
consensus

G	M	A	V	A	V	I	Y	Q	G	K	P	Y	Y	F	T	W	G	X	A	D	I	A
G	M	A	V	A	V	I	Y	Q	G	K	P	Y	Y	F	T	W	G	X	A	D	I	A
G	M	A	V	A	V	I	Y	Q	G	K	P	Y	Y	F	T	W	G	K	A	D	I	A

WWM
$\mathrm{Bla}^{\wedge} \mathrm{cmy}-2 \mathrm{wt}$
consensus

N	N	P	V	T	Q	Q	T	L	F	E	L	G	S	V	S	K

WWM
Bla^cmy-2 wt
consensus

120				130				
LTG	Q ${ }^{\text {W }}$	GI	Lᄂ	LA		T/A		GL ${ }^{\text {P }}$
LTG	\% ${ }^{\text {a }}$	GI	L	L A	T_{1}	T ${ }^{\text {a }}$	A ${ }^{\text {a }}$	G 1
LTG	e\|w	\|GI	L L	L\|A	TTr	T/A	AG	GIL

WWM
Bla^cmy-2 wt
consensus

WWM
Bla^cmy-2 wt
consensus

$\begin{array}{lllll}\text { Blacmy2 } & \text { WWM v wt } & & & \\ \text { Monday, February } & \text { 15, } 2010 & \text { 4:32 }\end{array}$

	190			200						
wnm Blancmy-2 wt consensus	P S SGIM S		A M M T	V/L		- L	L. A			
	P/5 G/M S		A M T T	v ${ }_{\text {L }}$			L A			
				VLOP\|L			$\square_{\text {L }}$ A			
	210		220					23		
mum	W ITMTVp	N	Q	A w ${ }^{\text {a }}$		G				
Blåcmy-2 w consensus			0	Y A w G		G	P	V		
	- IIT/VPle/nele			[Y\|A	w	G		G	P P	
	240 - 250									
wnm			A	GV	5 V I	$10^{1} \mathrm{M}$	M A			
Blactmy-2 wn consensus	- S Paber		A Y	6 V S	s V I	I 019	M/A			
	- ISPlage	T	\|A	Y		G/V ${ }^{\text {a }}$	s/vII	I 1 M	M/A	
	260			270						
wnm		A	\checkmark Ve	T L		GIA A	A $L^{\text {L }}$	A		
Bla^cmy-2 wt		A	v -	T L	deg	G I A	A 1.	A		
consensus	VTO\|A	N	M	A	v -1	TL	deg	GIIA	A 1	A ${ }^{\text {a }}$

wnM
Bla^cmy-2 wt

WWM
Bla^cmy-2 wt
consensus

Bla^cmy-2 wt consensus

V	


```
WWM
Bla^cmy-2 wt
    consensus LVEAAAAWEILEELLO
```

Figure 17. Amino acid sequence of wild-type BLA CMY 2 and mutated variant.

SECONDARY STRUCTURE OF WILD TYPE BLA CMY 2 AND MUTATED

VARIANT

WILD TYPE BLA CMY-2

Bla^cmy-2 wt Protein Toolbox List Page 1 Wednesday, February 16, 2011 4:11 PM

Key:
Argos = Argos transmembrane
vH trns = von Heijne transmembrane
CFhlx = Chou-Fasman Alpha Helix
CFsht = Chou-Fasman Beta Sheet
CFturn = Chou-Fasman Turn
CFval = Chou-Fasman Structure Value
CFtype = Chou-Fasman Probable Type
Pos. AA Argos vH trns CFhlx CFsht CFturn CFval CFtype
1 M $1.420-0.6001 .4700 .9700 .3170 .65 \mathrm{H}$
2 M $1.168-0.6001 .3900 .9030 .3610 .65$ H
3 K 1.107-0.600 1. 2440.8860 .3650 .65 H
4 K $1.107-0.6001 .2330 .8840 .3580 .65 \mathrm{H}$ 5 S $1.076-0.6001 .1810 .8510 .3900 .65$ H 6 L $1.103-0.6001 .1560 .8410 .2890 .65 \mathrm{H}$ 7 C $1.146-0.6001 .1660 .8770 .3070 .65 \mathrm{H}$ 8 C $1.190-0.6001 .1760 .9130 .3310 .65 \mathrm{H}$ 9 A $1.234-0.6001 .2440 .9230 .1910 .25$ H
10 L $1.267-0.6001 .1770 .950 \quad 0.2010 .65 \mathrm{H}$
11 L 1.2860 .2211 .2030 .9730 .2090 .65 H
12 L 1.2960 .2861 .1611 .0030 .3100 .65 H
13 T 1.2990 .3031 .1301 .0630 .3520 .40 H
14 A 1.2880 .3031 .0611 .0530 .3700 .40 H
15 S $1.2720 .240 \quad 0.9941 .080 \quad 0.3650 .65 \mathrm{H}$
16 F 1.2540 .1170 .9611 .1230 .3280 .65 H
17 S 1.231-0.036 1.027 1.079 0.351 0.65 H
18 T $1.198-0.1811 .0271 .0790 .2200 .65 \mathrm{H}$
19 F $1.155-0.2721 .0941 .0710 .2280 .40 \mathrm{H}$
20 A $1.099-0.3701 .1170 .9930 .2660 .65 \mathrm{H}$
21 A $1.039-0.4291 .1191 .030 \quad 0.2870 .25$ H
22 A $0.974-0.4601 .2060 .9640 .3040 .25 \mathrm{H}$
23 K $0.912-0.4841 .2340 .890 \quad 0.3380 .25 \mathrm{H}$
24 T $0.859-0.5401 .2310 .8760 .2810 .25$ H
25 E $0.822-0.6051 .1860 .9540 .2470 .65$ H
26 Q $0.799-0.6361 .1860 .9540 .2430 .65 \mathrm{H}$
27 Q 0.793 -0.682 1.159 0.947 0.224 0.65 H
28 I $0.800-0.7381 .1790 .9810 .3540 .65$ H
29 A $0.818-0.7371 .1031 .0870 .2360 .40 \mathrm{H}$
30 D $0.836-0.7061 .0501 .0810 .2980 .40 \mathrm{H}$
31 I $0.856-0.6641 .0061 .1090 .3670 .65 \mathrm{H}$
$32 \mathrm{~V} 0.874-0.6350 .9861 .074 \quad 0.3230 .65 \mathrm{H}$
$33 \mathrm{~N} 0.892-0.6020 .9401 .1530 .3880 .65 \mathrm{H}$
34 R $0.905-0.5700 .9101 .2230 .2700 .85$
35 T $0.910-0.5670 .8461 .1070 .2530 .85$
36 I $0.913-0.5480 .9011 .040 \quad 0.2551 .10$
37 T 0.917 -0.544 $0.9831 .070 \quad 0.568 \quad 0.85$
38 P 0.912 $-0.5391 .0271 .043 \quad 0.2391 .10$
39 L $0.902-0.5111 .1140 .9770 .2440 .85$
40 M $0.892-0.4391 .1570 .8840 .3410 .85$
41 Q $0.894-0.3711 .2230 .8400 .2290 .65$
42 E $0.907-0.3251 .2870 .9560 .2450 .85$
43 Q $0.923-0.2591 .176 \quad 0.9010 .2310 .85$
44 A $0.952-0.1871 .0460 .8940 .2800 .85$
45 I $0.998-0.1641 .0740 .919 \quad 0.679 \quad 0.85$ T
46 P $1.051-0.1761 .0530 .940 \quad 0.2590 .85$ T

```
47 G 1.101 -0.204 1.001 1.039 0.272 1.10 T
48 M 1.137 -0.210 1.001 1.039 0.228 1.10 T
49 A 1.155 -0.211 0.993 1.044 0.196 0.50
50 V 1.159 -0.219 1.057 1.160 0.220 0.00
51 A 1.137 -0.208 1.080 1.207 0.246 0.40
52 V 1.092 -0.194 1.051 1.183 0.308 0.40
53 I 1.038 -0.177 0.947 1.186 0.297 0.65
54 Y 0.976 -0.182 0.993 1.083 0.465 0.85 T
55 Q 0.923 -0.235 0.883 1.046 0.299 1.10 T
56 G 0.880 -0.286 0.856 1.011 0.376 1.10 T
57 K 0.852 -0.358 0.820 0.983 0.685 1.10 T
58 P 0.844 -0.432 0.870 0.993 0.346 1.10 ST
59 Y 0.849 -0.501 0.807 1.051 0.291 0.85 ST
60 Y 0.862 -0.588 0.869 1.083 0.355 0.85 ST
61 F 0.879 -0.643 0.773 1.104 0.383 0.65 S
62 T 0.890 -0.718 0.874 1.123 0.384 0.65 S
63 W 0.896 -0.739 0.956 1.073 0.292 0.65 S
64 G 0.889 -0.750 1.001 0.997 0.333 0.90 S
65 K 0.877 -0.751 0.987 1.016 0.366 0.90
66 A 0.861 -0.751 1.053 0.971 0.241 0.65
67 D 0.839 -0.772 1.040 0.917 0.307 0.65
68 I 0.814 -0.768 1.089 0.894 0.401 0.65
69 A 0.795 -0.775 1.087 0.939 0.388 0.85
70 N 0.781 -0.792 0.977 0.901 0.405 1.10
71 N 0.780 -0.806 0.959 1.011 0.295 1.10
72 H 0.780 -0.801 0.939 0.977 0.636 1.10 T
73 P 0.784 -0.748 0.936 0.963 0.313 1.10 ST
74 V 0.801 -0.706 0.989 0.969 0.305 1.10 ST
75 T 0.831-0.674 0.979 1.033 0.300 1.10 ST
76 Q 0.867 -0.626 0.990 1.024 0.307 0.50 S
77 Q 0.906 -0.595 1.069 1.121 0. 283 0.00 S
78 T 0.935 -0.545 1.144 1.016 0.240 0.65 S
79 L 0.967 -0.511 1.211 0.989 0.249 0.65 S
80 F 0.998-0.495 1.110 1.006 0.307 0.65 S
81 E 1.019 -0.480 1.046 1.027 0.377 0.65 S
82 L 1.026 -0.459 1.057 1.067 0.324 0.40
83 G 1.021 -0.402 0.989 1.057 0.373 0.65
84 S 1.009 -0.364 1.011 0.979 0.388 0.90
85 V 1.005 -0.340 0.924 1.044 0.352 0.90
86 S 1.001 -0.317 0.891 1.087 0.365 0.65
87 K 0.994 -0.267 0.940 1.064 0.319 0.65
88 T 0.993-0.241 0.903 1.060 0.470 0.65 T
89 F 1.000 -0.239 0.903 1.060 0.385 0.65 T
90 N 1.016 -0.266 0.971 1.070 0.342 0.65 T
91 G 1.033-0.295 0.876 1.091 0.338 0.65 T
92 V 1.041 -0.320 0.837 1.050 0.429 0.65
93 L 1.039 -0.331 0.833 0.964 0.417 0.90
94 G 1.041 -0.376 0.889 0.984 0.424 0.90
95 G 1.033 -0.421 0.947 1.060 0.303 0.65
96 D 1.016 -0.418 1.001 0.976 0.294 0.90
97 A 0.988 -0.436 0.953 0.971 0.214 0.90
98 I 0.957 -0.441 0.953 0.971 0.370 0.90
99 A 0.925-0.487 1.079 0.947 0.420 0.65
100 R 0.900-0.505 1.069 1.051 0.288 0.40
101 G 0.870 -0.557 1.060 1.033 0.270 0.65
102 E 0.844 -0.610 1.107 0.971 0.232 0.65
103 I 0.822 -0.648 1.040 0.979 0.300 0.65
104 K 0.805 -0.689 1.051 0.940 0.286 0.85
105 L 0.792 -0.760 1.046 0.900 0.447 0.85 T
106 S 0.785 -0.792 0.970 1.006 0.317 1.10 T
107 D 0.776-0.795 0.950 0.971 0.643 1.10 T
108 P 0.769 -0.790 0.950 0.971 0.310 1.10 T
109 V 0.765 -0.815 0.867 1.004 0.367 1.10 T
```

```
110 T 0.765 -0.812 0.891 1.031 0.482 1.10 T
111 K 0.765 -0.797 0.817 1.020 0.252 1.10 T
112 Y 0.765 -0.835 0.949 1.036 0.193 1.10 T
113 W 0.765 -0.844 1.004 0.969 0.615 1.10 T
114 P 0.767-0.866 1.004 0.969 0.277 1.10 T
115 E 0.769 -0.883 0.909 0.990 0.298 1.10 T
116 L 0.765 -0.904 0.981 0.921 0.454 1.10 T
117 T 0.760-0.873 1.021 0.873 0.341 0.90 T
118 G 0.761 -0.842 1.089 0.944 0.421 0.65 H T
119 K 0.767-0.821 1.064 0.951 0.315 0.65 HST
120 Q 0.779 -0.808 0.959 0.937 0.276 0.90 HS
121 W 0.801 -0.734 0.979 0.971 0.421 0.90 HS
122 Q 0.829 -0.678 1.036 0.981 0.257 0.65 HS
123 G 0.873 -0.660 1.046 1.017 0.305 0.65 HS
124 I 0.924 -0.622 1.050 1.049 0.255 0.65 S
125 R 0.970 -0.566 1.083 1.040 0.185 0.25 S
126 L 1.018 -0.497 1.087 1.071 0.249 0.00 S
127 L 1.059 -0.438 1.191 1.069 0.202 0.40 S
128 H 1.091 -0.353 1.171 1.034 0.279 0.65 S
129 L 1.116 -0.264 1.137 1.071 0.327 0.40 S
130 A 1.129 -0.205 1.070 1.099 0.361 0.60 S
131 T 1.133 -0.140 1.069 1.081 0.274 0.60 S
132 Y 1.134 -0.107 0.974 1.059 0.377 0.85 S
133 T 1.125 -0.120 0.869 1.044 0.504 1.10 ST
134 A 1.111 -0.148 0.870 1.061 0.405 0.85 ST
135 G 1.087 -0.180 0.826 0.980 0.291 1.10 ST
136 G 1.057 -0.215 0.909 0.947 0.231 1.10 T
137 L 1.016 -0.311 0.971 0.889 0.586 1.10
138 P 0.966 -0.424 0.926 0.967 0.220 1.10 S
139 L 0.904 -0.502 0.920 0.927 0.240 1.10 S
140 Q 0.835 -0.579 0.989 0.899 0.223 1.10 S
141 I 0.768 -0.652 0.951 0.856 0.694 1.10 ST
142 P 0.715 -0.689 1.007 0.977 0.444 1.10 ST
143 D 0.670 -0.732 0.959 0.973 0.368 1.10 T
144 D 0.644 -0.739 0.926 0.961 0.375 1.10 T
145 V 0.640 -0.760 0.963 0.864 0.442 0.90 T
146 R 0.670 -0.781 1.073 0.901 0.310 0.65 T
147 D 0.722 -0.838 1.109 0.927 0.355 0.65 T
148 K 0.785 -0.904 1.146 0.970 0.236 0.65 ST
149 A 0.844 -0.935 1.201 0.903 0.242 0.65 S
150 A 0.899 -0.957 1.239 0.916 0.175 0.65 S
151 L 0.942 -0.994 1.243 1.001 0.244 0.65 S
152 L 0.960 -1.012 1.170 1.070 0.298 0.60 S
153 H 0.946 -0.976 1.167 1.056 0.393 0.60 S
154 F 0.910 -0.908 1.111 1.036 0.252 0.85 S
155 Y 0.862 -0.847 1.067 1.053 0.538 0.60 ST
156 Q 0.809 -0.806 1.063 1.021 0.319 0.85 ST
157 N 0.762 -0.775 0.963 0.959 0.279 1.10 ST
158 W 0.721 -0.800 0.991 0.884 0.307 1.10 ST
159 Q 0.698 -0.818 1.030 0.869 0.669 1.10 ST
160 P 0.694 -0.871 0.967 0.927 0.343 1.10 ST
161 Q 0.702 -0.916 0.913 0.910 0.220 1.10 ST
162 W 0.720 -0.963 0.851 0.879 0.371 1.10 ST
163 T 0.743 -0.953 0.854 0.893 0.725 1.10 ST
164 P 0.762 -0.900 0.956 0.911 0.317 1.10 ST
165 G 0.781 -0.847 0.911 0.939 0.335 1.10 T
166 A 0.802 -0.779 0.956 0.921 0.344 1.10 T
167 K 0.820 -0.693 0.940 0.927 0.322 0.90
168 R 0.841 -0.591 1.050 0.964 0.267 0.65
169 L 0.863-0.507 1.099 0.941 0.252 0.65
170 Y 0.891 -0.422 1.031 0.949 0.455 0.65 T
171 A 0.933 -0.362 0.973 0.974 0.374 0.90 T
172 N 0.983 -0.308 0.974 1.040 0.481 0.90 T
```

```
173 S 1.032 -0.241 0.869 1.026 0.424 0.90 T
174 S 1.086 -0.190 0.951 0.993 0.414 0.90 T
175 I 1.136 -0.153 0.920 1.053 0.229 0.65 T
176 G 1.180 -0.120 0.871 1.076 0.344 0.65 H
177 L 1.211 -0.094 0.939 1.069 0.350 0.65 H
178 F 1.225 -0.045 1.007 1.079 0.249 0.65 H
179 G 1.221-0.035 1.053 1.000 0.272 0.65 H
180 A 1.203-0.025 1.103 1.081 0.173 0.40 H
181 L 1.165 -0.040 1.093 1.046 0.258 0.85 H
182 A 1.119 -0.084 1.014 0.949 0.248 1.10 H
183 V 1.071 -0.131 1.051 0.953 0.317 0.85 H
184 K 1.024 -0.203 0.947 0.956 0.723 1.10 H T
185 P 0.981 -0.278 0.971 0.949 0.486 1.10 H T
186 S 0.945 -0.381 0.904 0.956 0.325 1.10 T
187 G 0.914 -0.484 0.877 0.921 0.434 1.10 T
188 M 0.890 -0.555 0.907 0.919 0.385 0.90 T
189 S 0.872 -0.624 1.039 0.934 0.326 0.65 T
190 Y 0.861 -0.677 1.106 0.927 0.277 0.65 T
191 E 0.854-0.727 1.236 0.934 0.206 0.65
192 E 0.843-0.739 1.144 0.969 0.225 0.65
193 A 0.832-0.748 1.164 0.974 0.292 0.65
194 M 0.825-0.757 1.199 0.937 0.360 0.65
195 T 0.827-0.760 1.123 1.043 0.344 0.65
196 R 0.833-0.795 1.103 1.081 0.272 0.40
197 R 0.832 -0.806 1.100 1.067 0.252 0.60
198 V 0.834 -0.807 0.964 1.020 0.192 1.10
199 L 0.846-0.769 1.031 0.993 0.263 0.85
200 Q 0.865 -0.738 1.070 0.961 0.596 0.85
201 P 0.892 -0.702 1.119 0.966 0.269 0.85
202 L 0.916 -0.624 1.173 0.881 0.270 0.85
203 K 0.938-0.560 1.161 0.890 0.169 0.85 S
204 L 0.967 -0.541 1.099 0.949 0.309 0.65 S
205 A 0.991 -0.562 1.166 1.020 0.339 0.65 S
206 H 1.005 -0.580 1.119 1.081 0.368 0.40 S
207 T 1.005 -0.633 1.061 1.144 0.191 0.40 S
208 W 0.983-0.740 1.006 1.211 0.229 0.85 S
209 I 0.939 -0.830 0.896 1.174 0.245 0.85 S
210 T 0.880 -0.896 0.903 1.134 0.266 0.85 S
211 V 0.808 -0.941 0.913 1.070 0.581 0.85 S
212 P 0.732 -0.962 0.977 1.014 0.455 1.10 ST
213 Q 0.660-0.960 1.020 0.921 0.332 1.10 T
214 N 0.599 -0.946 1.077 0.859 0.353 0.85 T
215 E 0.558-0.996 1.096 0.749 0.307 0.65 T
216 Q 0.545 -1.039 1.124 0.836 0.493 0.65 T
217 K 0.557 -1.109 1.127 0.850 0.337 0.65 T
218 D 0.583-1.203 1.140 0.904 0.414 0.65 T
219 Y 0.615 -1.268 1.014 0.929 0.374 0.90 T
220 A 0.647-1.315 0.936 0.993 0.388 0.90
221 W 0.672 -1.294 0.897 1.024 0.361 0.90
222 G 0.692 -1.258 0.954 1.029 0.330 0.90
223 Y 0.703 -1.157 0.931 0.981 0.417 0.90 T
224 R 0.703 -1.030 0.923 0.963 0.415 1.10 T
225 E 0.706-0.944 0.856 0.891 0.281 1.10 T
226 G 0.715 -0.852 0.906 0.973 0.304 1.10 T
227 K 0.732 -0.808 0.977 0.949 0.526 1.10
228 P 0.757-0.781 0.970 1.020 0.296 1.10
229 V 0.783-0.802 0.881 1.049 0.241 1.10
230 H 0.805 -0.817 0.876 1.009 0.381 1.10
231 V 0.829-0.795 0.780 1.030 0.387 1.55
232 S 0.844 -0.778 0.887 1.053 0.799 0.85 T
233 P 0.853-0.706 0.943 0.986 0.294 1.10 T
234 G 0.855-0.663 0.917 0.934 0.317 1.10 T
235 Q 0.854 -0.607 0.971 0.850 0.336 1.10 T
```

```
236 L 0.852 -0.560 1.060 0.821 0.270 0.65
237 D 0.857-0.535 1.170 0.859 0.358 0.65
238 A 0.863 -0.499 1.193 0.906 0.280 0.65
239 E 0.876-0.520 1.091 0.923 0.398 0.65
240 A 0.888-0.516 1.036 0.990 0.368 0.65
241 Y 0.900 -0.481 1.063 0.997 0.288 0.65
242 G 0.915-0.502 0.996 1.004 0.328 0.90
243 V 0.932-0.509 0.907 1.033 0.408 0.90
244 K 0.945 -0.522 0.853 1.117 0.372 0.65
245 S 0.957-0.510 0.889 1.146 0.341 0.65
246 S 0.959-0.497 0.957 1.117 0.262 0.65
247 V 0.963-0.523 1.037 1.043 0.330 0.65
248 I 0.967-0.514 1.046 1.061 0.225 0.40
249 D 0.961 -0.551 1.066 1.067 0.349 0.40
250 M 0.951 -0.559 1.090 1.094 0.410 0.40
251 A 0.938-0.573 1.090 1.094 0.283 0.40
252 R 0.922 -0.609 1.133 1.001 0.207 0.65
253 W 0.912 -0.629 1.169 1.027 0.220 0.65
254 V 0.898-0.677 1.087 0.997 0.286 0.65
255 Q 0.886-0.695 1.113 1.007 0.396 0.65
256 A 0.877-0.779 1.124 0.969 0.238 0.65
257 N 0.867 -0.868 1.167 0.934 0.480 0.65 T
258 M 0.855-0.899 1.154 0.857 0.319 0.65 T
259 D 0.844-0.941 1.147 0.897 0.402 0.65 T
260 A 0.828 -0.979 1.093 0.981 0.345 0.65 T
261 S 0.807 -0.996 1.146 0.987 0.291 0.65
262 H 0.780-0.973 1.141 0.956 0.289 0.65
263 V 0.758 -0.923 1.169 0.963 0.332 0.65
264 Q 0.745-0.902 1.103 1.007 0.285 0. 25
265 E 0.744-0.846 1.171 1.017 0.306 0.65
266 K 0.751 -0.784 1.179 0.977 0.297 0.65
267 T 0.769 -0.743 1.230 0.879 0.246 0.65
268 L 0.805 -0.715 1.129 0.896 0.348 0.65
269 Q 0.854-0.722 1.061 0.996 0.418 0.65
270 Q 0.902 -0.725 1.070 1.014 0.230 0.65
271 G 0.942 -0.757 1.137 0.987 0.241 0.65 S
272 I 0.965 -0.727 1.136 0.970 0.213 0.65 S
273 A 0.976 -0.694 1.136 0.970 0.218 0.65 S
274 L 0.973 -0.685 1.071 0.991 0.280 0.85 S
275 A 0.950-0.645 1.129 1.001 0.368 0.85 S
276 Q 0.916 -0.600 1.093 0.973 0.437 0.85 ST
277 S 0.879 -0.572 1.050 1.007 0.507 0.85 ST
278 R 0.843-0.593 1.001 1.003 0.284 1.10 T
279 Y 0.819 -0.614 0.956 1.081 0.250 0.85 T
280 W 0.807-0.609 0.854 1.099 0.348 0.85 T
281 R 0.801 -0.636 0.886 1.066 0.375 0.65
282 I 0.813-0.685 0.959 1.063 0.362 0.65
283 G 0.828-0.710 0.959 1.063 0.351 0.65
284 D 0.845 -0.692 0.999 1.014 0.441 0.90 T
285 M 0.872 -0.694 0.941 1.004 0.322 0.90 T
286 Y 0.897-0.691 0.989 0.943 0.440 0.90 T
287 Q 0.917 -0.653 0.989 0.943 0.347 0.90 T
288 G 0.935-0.611 0.981 1.003 0.484 0.90 T
289 L 0.944-0.606 0.977 0.971 0.274 0.90 T
290 G 0.953 -0.608 1.084 0.931 0.247 0.65
291 W 0.959 -0.619 1.089 0.963 0.221 0.65
292 E 0.950-0.628 1.137 0.940 0.265 0.65
293 M 0.934 -0.631 1.093 0.957 0.451 0.85
294 L 0.916 -0.622 1.087 0.917 0.276 0.85
295 N 0.902 -0.608 1.131 0.900 0.278 0.85
296 W 0.887-0.620 1.101 0.903 0.599 0.85 T
297 P 0.873 -0.599 1.076 0.893 0.257 0.85 T
298 L 0.861 -0.580 1.039 0.850 0.292 0.85 T
```

```
299 K 0.861 -0.592 1.027 0.877 0.416 1.10 T
300 A 0.868-0.650 1.024 0.921 0.351 0.90
301 D 0.873 -0.653 1.089 1.037 0.355 0.65
302 S 0.871 -0.644 1.031 1.000 0.258 0.65
303 I 0.871 -0.631 0.936 1.021 0.420 1.10
304 I 0.869 -0.624 0.869 1.029 0.422 1.10
305 N 0.867-0.580 0.869 1.029 0.452 1.10 T
306 G 0.866-0.495 0.869 1.029 0.526 1.10 T
307 S 0.869 -0.419 0.906 0.931 0.450 1.10 T
308 D 0.887 -0.350 0.897 0.937 0.411 1.10 T
309 S 0.921 -0.295 0.953 0.957 0.319 1.10 T
310 K 0.964 -0.273 1.059 0.971 0.208 0.65 T
311 V 1.012 -0.255 1.126 0.964 0.232 0.65
312 A 1.061 -0.264 1.161 0.990 0.178 0.25
313 L 1.102 -0.296 1.230 1.000 0.242 0.85
314 A 1.129-0.313 1.129 0.981 0.240 0.85
315 A 1.136 -0.323 1.183 0.897 0.177 0.85
316 L 1.121 -0.270 1.129 0.981 0.540 0.85
317 P 1.086-0.251 1.149 0.943 0.268 0.85
318 A 1.042 -0.205 1.094 1.027 0.238 0.85
319 V 0.991-0.193 1.039 1.007 0.239 0.85
320 E 0.940 -0.200 0.927 0.953 0.363 1.10
321 V 0.900 -0.215 0.927 0.953 0.247 1.10
322 N 0.873-0.272 0.927 0.953 0.644 1.10 T
323 P 0.858 -0.313 0.871 0.831 0.596 1.10 T
324 P 0.863-0.383 0.850 0.853 0.270 1.10 T
325 A 0.874 -0.455 0.850 0.853 0.539 1.10 T
326 P 0.889 -0.502 0.897 0.854 0.299 1.10
327 A 0.908-0.551 1.007 0.891 0.238 1.10
328 V 0.925 -0.565 1.050 0.936 0.318 0.85
329 K 0.935-0.587 1.007 0.970 0.423 0.90
330 A 0.941 -0.578 1.063 1.091 0.316 0.40
331 S 0.936-0.530 1.053 1.117 0.213 0.40
332 W 0.927-0.499 1.099 1.014 0.313 0.65
333 V 0.927-0.462 1.041 1.077 0.260 0.40
334 H 0.929 -0.454 0.937 1.080 0.472 0.65 T
335 K 0.936 -0.422 0.937 1.080 0.459 0.85 T
336 T 0.950-0.392 0.914 1.090 0.375 0.85 T
337 G 0.970 -0.357 0.864 1.009 0.458 1.10 T
338 S 1.000 -0.317 0.770 0.986 0.570 1.10 T
339 T 1.038-0.276 0.747 1.064 0.426 0.85 T
340 G 1.070 -0.209 0.709 1.023 0.404 1.10 T
341 G 1.099 -0.162 0.746 1.027 0.439 1.10 T
342 F 1.121 -0.151 0.731 1.070 0.394 0.65
343 G 1.135 -0.167 0.743 1.110 0.408 0.65
344 S 1.138-0.188 0.847 1.107 0.269 0.65 S
345 Y 1.126 -0.206 0.920 1.164 0.230 0.65 S
346 V 1.097 -0.235 0.897 1.189 0.256 0.85 S
347 A 1.057-0.263 0.891 1.149 0.195 0.85 S
348 F 1.011 -0.264 0.980 1.120 0.205 0.85 S
349 V 0.966 -0.237 1.053 1.051 0.625 0.60 ST
350 P 0.931 -0.215 1.051 0.947 0.325 0.85 ST
351 E 0.915-0.211 1.053 0.964 0.432 0.85 T
352 K 0.915 -0.255 0.980 0.907 0.326 1.10 T
353 N 0.932 -0.309 0.989 0.901 0.432 0.90
354 L 0.964 -0.368 1.044 1.023 0.212 0.65
355 G 1.004 -0.444 1.049 1.054 0.217 0.40
356 I 1.038-0.540 1.059 1.090 0.175 0.40
357 V 1.055 -0.598 1.114 1.110 0.238 0.40
358 M 1.043-0.580 1.057 1.073 0.219 0.60
359 L 1.011 -0.565 1.153 1.051 0.423 0.60
360 A 0.964-0.541 1.131 0.980 0.321 0.85
361 N 0.906 -0.531 1.104 0.946 0.526 0.85 T
```

	K 0.842		0.969			
3	S 0.781	-0.520	0.911	0.861	0.310	0
364	Y 0.739	-0.577	0.801	0.824	0.732	10
65	P 0.723	-0.661	0.803	0.929	0.272	1.10
366	N 0.721	-0.738	0.764	0.960	0.663	10
367	P 0.734	-0.761	0.777	1.037	0.302	1.10
8	V 0.757	-0.771	0.880	0.966	0.258	0
369	R 0.794	-0.807	0.990	1.003	0.253	10
70	V 0.832	-0.821	1.046	1.023	0.21	25
371	E 0.863	-0.814	1.113	1.094	0.334	0.00
372	A 0.880	-0.801	1.120	1.023	0.285	0.25
73	A 0.895	-0.600	1.121	1.089	0.228	0.00
374	W 0.895	-0.600	1.177	1.021	0.266	0.25
375	R 0.887	-0.600	1.177	1.021	0.204	25
376	I 0.868	-0.600	1.169	1.003	0.240	0.25
377	L 0.846	-0.600	1.170	1.020	0.263	0.25
378	E 0.824	-0.600	1.210	0.971	0.305	0.25
379	K 0.816	-0.600	1.073	0.830	0.117	0.25
380	L 0.797	-0.600	1.048	0.668	0.000	0.25
381	Q 0.791	-0.600	0.857	0.607	0.000	50
382	0.830	-0.600	0.000	0.000	0.000	1.40

MUTATED VARIANT

Bla^cmy-2 (WWMoore) Protein Toolbox List Page 1 Wednesday, February 16, 2011 4:09 PM

Key:
Argos = Argos transmembrane
vH trns = von Heijne transmembrane
CFhlx = Chou-Fasman Alpha Helix
CFsht = Chou-Fasman Beta Sheet
CFturn = Chou-Fasman Turn
CFval = Chou-Fasman Structure Value
CFtype = Chou-Fasman Probable Type
Pos. AA Argos vH trns CFhlx CFsht CFturn CFval CFtype
1 M 1.420 -0.600 1.470 0.970 0.317 0.65 H
2 M $1.168-0.6001 .3900 .9030 .3610 .65$ H
3 K $1.107-0.6001 .2440 .8860 .3650 .65 \mathrm{H}$
4 K 1.107-0.600 1.233 0.884 0.358 0.65 H 5 S $1.076-0.6001 .1810 .8510 .3900 .65 \mathrm{H}$ 6 L $1.103-0.6001 .1560 .8410 .2890 .65 \mathrm{H}$ 7 C $1.146-0.6001 .1660 .8770 .3070 .65 \mathrm{H}$ 8 C $1.190-0.6001 .1760 .9130 .3310 .65 \mathrm{H}$ 9 A $1.234-0.6001 .2440 .9230 .1910 .25$ H 10 L 1.267 -0.600 $1.1770 .950 \quad 0.2010 .65 \mathrm{H}$ 11 L 1.2860 .2211 .2030 .9730 .2090 .65 H 12 L 1.2960 .2861 .1611 .0030 .3100 .65 H 13 T 1.2990 .3031 .1301 .0630 .3520 .40 H 14 A 1.2880 .3031 .0611 .0530 .3700 .40 H 15 S 1.2720 .2400 .9941 .0800 .3650 .65 H 16 F 1.2540 .1170 .9611 .1230 .3280 .65 H 17 S 1.231-0.036 1.027 1.079 0.351 0.65 H 18 T 1.198 -0.181 $1.0271 .0790 .220 \quad 0.65$ H 19 F $1.155-0.2721 .0941 .0710 .2280 .40 \mathrm{H}$ 20 A $1.099-0.3701 .1170 .9930 .2660 .65 \mathrm{H}$ 21 A $1.039-0.4291 .1191 .030 \quad 0.2870 .25$ H
22 A 0.974 -0.460 1.206 0.964 0.304 0.25 H
23 K $0.912-0.4841 .2340 .8900 .3380 .25 \mathrm{H}$
24 T $0.859-0.5401 .2310 .8760 .2810 .25$ H
25 E $0.822-0.6051 .1860 .9540 .2470 .65 \mathrm{H}$
26 Q 0.799 -0.636 1.186 0.954 0.243 0.65 H
27 Q 0.793-0.682 1.159 0.947 0.224 0.65 H

```
28 I 0.800 -0.738 1.179 0.981 0.354 0.65 H
29 A 0.818 -0.737 1.103 1.087 0.236 0.40 H
30 D 0.836 -0.706 1.050 1.081 0.298 0.40 H
3 1 ~ I ~ 0 . 8 5 6 - 0 . 6 6 4 ~ 1 . 0 0 6 ~ 1 . 1 0 9 ~ 0 . 3 6 7 ~ 0 . 6 5 ~ H ,
3 2 ~ V ~ 0 . 8 7 4 ~ - 0 . 6 3 5 ~ 0 . 9 8 6 ~ 1 . 0 7 4 ~ 0 . 3 2 3 ~ 0 . 6 5 ~ H
33 N 0.892 -0.602 0.940 1.153 0.388 0.65 H
34 R 0.905 -0.570 0.910 1.223 0.270 0.85
35 T 0.910 -0.567 0.846 1.107 0.253 0.85
36 I 0.913 -0.548 0.901 1.040 0.255 1.10
37 T 0.917 -0.544 0.983 1.070 0.568 0.85
38 P 0.912 -0.539 1.027 1.043 0.239 1.10
39 L 0.902 -0.511 1.114 0.977 0.244 0.85
40 M 0.892 -0.439 1.157 0.884 0.341 0.85
41 Q 0.894 -0.371 1.223 0.840 0.229 0.65
42 E 0.907 -0.325 1.287 0.956 0.245 0.85
43 Q 0.923-0.259 1.176 0.901 0.231 0.85
44 A 0.952 -0.187 1.046 0.894 0.280 0.85
45 I 0.998 -0.164 1.074 0.919 0.679 0.85 T
46 P 1.051 -0.176 1.053 0.940 0.259 0.85 T
47 G 1.101 -0.204 1.001 1.039 0.272 1.10 T
48 M 1.137 -0.210 1.001 1.039 0.228 1.10 T
49 A 1.155 -0.211 0.993 1.044 0.196 0.50
50 V 1.159 -0.219 1.057 1.160 0.220 0.00
51 A 1.137 -0.208 1.080 1.207 0.246 0.40
52 V 1.092 -0.194 1.051 1.183 0.308 0.40
53 I 1.038 -0.177 0.947 1.186 0.297 0.65
54 Y 0.976 -0.182 0.993 1.083 0.465 0.85 T
55 Q 0.923 -0.235 0.883 1.046 0.299 1.10 T
56 G 0.880 -0.286 0.856 1.011 0.376 1.10 T
57 K 0.852 -0.358 0.820 0.983 0.685 1.10 T
58 P 0.844 -0.432 0.870 0.993 0.346 1.10 ST
59 Y 0.849 -0.501 0.807 1.051 0.291 0.85 ST
60 Y 0.862 -0.588 0.869 1.083 0.355 0.85 ST
61 F 0.879 -0.643 0.773 1.104 0.383 0.65 S
62 T 0.890 -0.718 0.874 1.123 0.384 0.65 S
63 W 0.896 -0.739 0.956 1.073 0.292 0.65 S
64 G 0.889 -0.750 1.001 0.997 0.333 0.90 S
65 K 0.877 -0.751 0.987 1.016 0.366 0.90
66 A 0.861 -0.751 1.053 0.971 0.241 0.65
67 D 0.839 -0.772 1.040 0.917 0.307 0.65
68 I 0.814 -0.768 1.089 0.894 0.401 0.65
69 A 0.795 -0.775 1.087 0.939 0.388 0.85
70 N 0.781 -0.792 0.977 0.901 0.405 1.10
71 N 0.780 -0.806 0.959 1.011 0.295 1.10
72 H 0.780 -0.801 0.939 0.977 0.636 1.10 T
73 P 0.784 -0.748 0.936 0.963 0.313 1.10 ST
74 V 0.801 -0.706 0.989 0.969 0.305 1.10 ST
75 T 0.831 -0.674 0.979 1.033 0.300 1.10 ST
76 Q 0.867 -0.626 0.990 1.024 0.307 0.50 S
77 Q 0.906 -0.595 1.069 1.121 0. 283 0.00 S
78 T 0.935 -0.545 1.144 1.016 0.240 0.65 S
79 L 0.967 -0.511 1.211 0.989 0.249 0.65 S
80 F 0.998-0.495 1.110 1.006 0.307 0.65 S
81 E 1.019 -0.480 1.046 1.027 0.377 0.65 S
82 L 1.026 -0.459 1.057 1.067 0.324 0.40
83 G 1.021 -0.402 0.989 1.057 0.373 0.65
84 S 1.009 -0.364 1.011 0.979 0.388 0.90
85 V 1.005 -0.340 0.924 1.044 0.352 0.90
86 S 1.001 -0.317 0.891 1.087 0.365 0.65
87 K 0.994 -0.267 0.940 1.064 0.319 0.65
88 T 0.993 -0.241 0.903 1.060 0.470 0.65 T
89 F 1.000 -0.239 0.903 1.060 0.385 0.65 T
90 N 1.016 -0.266 0.971 1.070 0.342 0.65 T
```

```
91 G 1.033 -0.295 0.876 1.091 0.338 0.65 T
92 V 1.041 -0.320 0.837 1.050 0.429 0.65
93 L 1.039 -0.331 0.833 0.964 0.417 0.90
94 G 1.041 -0.376 0.889 0.984 0.424 0.90
95 G 1.033 -0.421 0.947 1.060 0.303 0.65
96 D 1.016 -0.418 1.001 0.976 0.294 0.90
97 A 0.988 -0.436 0.953 0.971 0.214 0.90
98 I 0.957 -0.441 0.953 0.971 0.370 0.90
99 A 0.925 -0.487 1.079 0.947 0.420 0.65
100 R 0.900-0.505 1.069 1.051 0.288 0.40
101 G 0.870 -0.557 1.060 1.033 0.270 0.65
102 E 0.844 -0.610 1.107 0.971 0.232 0.65
103 I 0.822 -0.648 1.040 0.979 0.300 0.65
104 K 0.805 -0.689 1.051 0.940 0.286 0.85
105 L 0.792 -0.760 1.046 0.900 0.447 0.85 T
106 S 0.785-0.792 0.970 1.006 0.317 1.10 T
107 D 0.776 -0.795 0.950 0.971 0.643 1.10 T
108 P 0.769 -0.790 0.950 0.971 0.310 1.10 T
109 V 0.765 -0.815 0.867 1.004 0.367 1.10 T
110 T 0.765 -0.812 0.891 1.031 0.482 1.10 T
111 K 0.765 -0.797 0.817 1.020 0.252 1.10 T
112 Y 0.765 -0.835 0.949 1.036 0.193 1.10 T
113 W 0.765 -0.844 1.004 0.969 0.615 1.10 T
114 P 0.767-0.866 1.004 0.969 0.277 1.10 T
115 E 0.769 -0.883 0.909 0.990 0.298 1.10 T
116 L 0.765 -0.904 0.981 0.921 0.454 1.10 T
117 T 0.760 -0.873 1.021 0.873 0.341 0.90 T
118 G 0.761 -0.842 1.089 0.944 0.421 0.65 H T
119 K 0.767 -0.821 1.064 0.951 0.315 0.65 HST
120 Q 0.779 -0.808 0.959 0.937 0.276 0.90 HS
121 W 0.801 -0.734 0.979 0.971 0.421 0.90 HS
122 Q 0.829 -0.678 1.036 0.981 0.257 0.65 HS
123 G 0.873 -0.660 1.046 1.017 0.305 0.65 HS
124 I 0.924 -0.622 1.050 1.049 0.255 0.65 S
125 R 0.970 -0.566 1.083 1.040 0.185 0.25 S
126 L 1.018 -0.497 1.087 1.071 0.249 0.00 S
127 L 1.059 -0.438 1.191 1.069 0.202 0.40 S
128 H 1.091 -0.353 1.171 1.034 0.279 0.65 S
129 L 1.116 -0.264 1.137 1.071 0.327 0.40 S
130 A 1.129 -0.205 1.070 1.099 0.361 0.60 S
131 T 1.133 -0.140 1.069 1.081 0.274 0.60 S
132 Y 1.134 -0.107 0.974 1.059 0.377 0.85 S
133 T 1.125 -0.120 0.869 1.044 0.504 1.10 ST
134 A 1.111 -0.148 0.870 1.061 0.405 0.85 ST
135 G 1.087-0.180 0.826 0.980 0. 291 1.10 ST
136 G 1.057-0.215 0.909 0.947 0.231 1.10 T
137 L 1.016 -0.311 0.971 0.889 0.586 1.10
138 P 0.966 -0.424 0.926 0.967 0.220 1.10 S
139 L 0.904 -0.502 0.920 0.927 0.240 1.10 S
140 Q 0.835-0.579 0.989 0.899 0.223 1.10 S
141 I 0.768 -0.652 0.951 0.856 0.694 1.10 ST
142 P 0.715 -0.689 1.007 0.977 0.444 1.10 ST
143 D 0.670 -0.732 0.959 0.973 0.368 1.10 T
144 D 0.644 -0.739 0.926 0.961 0.375 1.10 T
145 V 0.640 -0.760 0.963 0.864 0.442 0.90 T
146 R 0.670 -0.781 1.073 0.901 0.310 0.65 T
147 D 0.722 -0.838 1.109 0.927 0.355 0.65 T
148 K 0.785 -0.904 1.146 0.970 0.236 0.65 ST
149 A 0.844 -0.935 1.201 0.903 0.242 0.65 S
150 A 0.899 -0.957 1.239 0.916 0.175 0.65 S
151 L 0.942 -0.994 1.243 1.001 0.244 0.65 S
152 L 0.960 -1.012 1.170 1.070 0.298 0.60 S
153 H 0.946 -0.976 1.167 1.056 0.393 0.60 S
```

```
154 F 0.910 -0.908 1.111 1.036 0.252 0.85 S
155 Y 0.862 -0.847 1.067 1.053 0.538 0.60 ST
156 Q 0.809 -0.806 1.063 1.021 0.319 0.85 ST
157 N 0.762 -0.775 0.963 0.959 0.279 1.10 ST
158 W 0.721 -0.800 0.991 0.884 0.307 1.10 ST
159 Q 0.698 -0.818 1.030 0.869 0.669 1.10 ST
160 P 0.694 -0.871 0.967 0.927 0.343 1.10 ST
161 Q 0.702 -0.916 0.913 0.910 0.220 1.10 ST
162 W 0.720 -0.963 0.851 0.879 0.371 1.10 ST
163 T 0.743 -0.953 0.854 0.893 0.725 1.10 ST
164 P 0.762 -0.900 0.956 0.911 0.317 1.10 ST
165 G 0.781 -0.847 0.911 0.939 0.335 1.10 T
166 A 0.802 -0.779 0.956 0.921 0.344 1.10 T
167 K 0.820 -0.693 0.940 0.927 0.322 0.90
168 R 0.841 -0.591 1.050 0.964 0. 267 0.65
169 L 0.863-0.507 1.099 0.941 0.252 0.65
170 Y 0.891 -0.422 1.031 0.949 0.455 0.65 T
171 A 0.933 -0.362 0.973 0.974 0.374 0.90 T
172 N 0.983-0.308 0.974 1.040 0.481 0.90 T
173 S 1.032 -0.241 0.869 1.026 0.424 0.90 T
174 S 1.086-0.190 0.951 0.993 0.414 0.90 T
175 I 1.136 -0.153 0.920 1.053 0.229 0.65 T
176 G 1.180 -0.120 0.871 1.076 0.344 0.65 H
177 L 1.211 -0.094 0.939 1.069 0.350 0.65 H
178 F 1.225 -0.045 1.007 1.079 0.249 0.65 H
179 G 1.221 -0.035 1.053 1.000 0.272 0.65 H
180 A 1.203 -0.025 1.103 1.081 0.173 0.40 H
181 L 1.165 -0.040 1.093 1.046 0.258 0.85 H
182 A 1.119 -0.084 1.014 0.949 0.248 1.10 H
183 V 1.071 -0.131 1.051 0.953 0.317 0.85 H
184 K 1.024 -0.203 0.947 0.956 0.723 1.10 H T
185 P 0.981 -0.278 0.971 0.949 0.486 1.10 H T
186 S 0.945 -0.381 0.904 0.956 0.325 1.10 T
187 G 0.914 -0.484 0.877 0.921 0.434 1.10 T
188 M 0.890 -0.555 0.907 0.919 0.385 0.90 T
189 S 0.872 -0.624 1.039 0.934 0.326 0.65 T
190 Y 0.861 -0.677 1.106 0.927 0.277 0.65 T
191 E 0.854-0.727 1.236 0.934 0.206 0.65
192 E 0.843-0.739 1.144 0.969 0.225 0.65
193 A 0.832 -0.748 1.164 0.974 0.292 0.65
194 M 0.825-0.757 1.199 0.937 0.360 0.65
195 T 0.827-0.760 1.123 1.043 0.344 0.65
196 R 0.833-0.795 1.103 1.081 0.272 0.40
197 R 0.832 -0.806 1.100 1.067 0.252 0.60
198 V 0.834 -0.807 0.964 1.020 0.192 1.10
199 L 0.846-0.769 1.031 0.993 0.263 0.85
200 Q 0.865 -0.738 1.070 0.961 0.596 0.85
201 P 0.892 -0.702 1.119 0.966 0.269 0.85
202 L 0.916 -0.624 1.173 0.881 0.270 0.85
203 K 0.938-0.560 1.161 0.890 0.169 0.85 S
204 L 0.967-0.541 1.099 0.949 0.309 0.65 S
205 A 0.991 -0.562 1.166 1.020 0.339 0.65 S
206 H 1.005 -0.580 1.119 1.081 0.368 0.40 S
207 T 1.005 -0.633 1.061 1.144 0.191 0.40 S
208 W 0.983 -0.740 1.006 1.211 0.229 0.85 S
209 I 0.939 -0.830 0.896 1.174 0.245 0.85 S
210 T 0.880 -0.896 0.903 1.134 0.266 0.85 S
211 V 0.808 -0.941 0.913 1.070 0.581 0.85 S
212 P 0.732 -0.962 0.977 1.014 0.455 1.10 ST
213 Q 0.660-0.960 1.020 0.921 0.332 1.10 T
214 N 0.599 -0.946 1.077 0.859 0.353 0.85 T
215 E 0.558-0.996 1.096 0.749 0.307 0.65 T
216 Q 0.545 -1.039 1.124 0.836 0.493 0.65 T
```

```
217 K 0.557 -1.109 1.127 0.850 0.337 0.65 T
218 D 0.583-1.203 1.140 0.904 0.414 0.65 T
219 Y 0.615 -1.268 1.014 0.929 0.374 0.90 T
220 A 0.647 -1.315 0.936 0.993 0.388 0.90
221 W 0.672 -1.294 0.897 1.024 0.361 0.90
222 G 0.692 -1.258 0.954 1.029 0.330 0.90
223 Y 0.703 -1.157 0.931 0.981 0.417 0.90 T
224 R 0.703 -1.030 0.923 0.963 0.415 1.10 T
225 E 0.706 -0.944 0.856 0.891 0.281 1.10 T
226 G 0.715 -0.852 0.906 0.973 0.304 1.10 T
227 K 0.732 -0.808 0.977 0.949 0.526 1.10
228 P 0.757-0.781 0.970 1.020 0.296 1.10
229 V 0.783-0.802 0.881 1.049 0.241 1.10
230 H 0.805 -0.817 0.876 1.009 0.381 1.10
231 V 0.829 -0.795 0.780 1.030 0.387 1.55
232 S 0.844-0.778 0.887 1.053 0.799 0.85 T
233 P 0.853-0.706 0.943 0.986 0.294 1.10 T
234 G 0.855-0.663 0.917 0.934 0.317 1.10 T
235 Q 0.854 -0.607 0.971 0.850 0.336 1.10 T
236 L 0.852 -0.560 1.060 0.821 0.270 0.65
237 D 0.857-0.535 1.170 0.859 0.358 0.65
238 A 0.863-0.499 1.193 0.906 0.280 0.65
239 E 0.876-0.520 1.091 0.923 0.398 0.65
240 A 0.888-0.516 1.036 0.990 0.368 0.65
241 Y 0.900 -0.481 1.063 0.997 0.288 0.65
242 G 0.915-0.502 0.996 1.004 0.328 0.90
243 V 0.932-0.509 0.907 1.033 0.408 0.90
244 K 0.945 -0.522 0.853 1.117 0.372 0.65
245 S 0.957-0.510 0.889 1.146 0.341 0.65
246 S 0.959-0.497 0.957 1.117 0.262 0.65
247 V 0.963-0.523 1.037 1.043 0.330 0.65
248 I 0.967-0.514 1.046 1.061 0.225 0.40
249 D 0.961 -0.551 1.066 1.067 0.349 0.40
250 M 0.951 -0.559 1.090 1.094 0.410 0.40
251 A 0.938-0.573 1.090 1.094 0.283 0.40
252 R 0.922 -0.609 1.133 1.001 0.207 0.65
253 W 0.912 -0.629 1.169 1.027 0.220 0.65
254 V 0.898-0.677 1.087 0.997 0.286 0.65
255 Q 0.886-0.695 1.113 1.007 0.396 0.65
256 A 0.877-0.779 1.124 0.969 0.238 0.65
257 N 0.867-0.868 1.167 0.934 0.480 0.65 T
258 M 0.855 -0.899 1.154 0.857 0.319 0.65 T
259 D 0.844-0.941 1.147 0.897 0.402 0.65 T
260 A 0.828 -0.979 1.093 0.981 0.345 0.65 T
261 S 0.807-0.996 1.146 0.987 0.291 0.65
262 H 0.780-0.973 1.141 0.956 0.289 0.65
263 V 0.758 -0.923 1.169 0.963 0.332 0.65
264 Q 0.745-0.902 1.103 1.007 0.285 0. 25
265 E 0.744-0.846 1.171 1.017 0.306 0.65
266 K 0.751 -0.784 1.179 0.977 0.297 0.65
267 T 0.769 -0.743 1.230 0.879 0.246 0.65
268 L 0.805 -0.680 1.129 0.896 0.348 0.65
269 Q 0.858-0.652 1.061 0.996 0.418 0.65
270 Q 0.914-0.620 1.070 1.014 0.230 0.65
271 G 0.965 -0.617 1.137 0.987 0.241 0.65 S
272 I 1.004 -0.551 1.136 0.970 0.213 0.65 S
273 A 1.033-0.483 1.136 0.970 0.218 0.65 S
274 L 1.054 -0.475 1.071 0.991 0.280 0.65 S
275 A 1.058 -0.434 1.177 1.006 0.353 0.65 S
276 Q 1.043-0.389 1.141 0.977 0.374 0.65 S
277 S 1.018-0.361 1.099 1.011 0.426 0.65 S
278 L 0.985 -0.383 1.050 1.007 0.275 0.65 S
279 Y 0.957 -0.403 1.004 1.086 0.250 0.65 S
```

```
280 W 0.934-0.398 0.903 1.103 0.348 0.65 S
281 R 0.909 -0.425 0.934 1.070 0.375 0.65 S
282 I 0.894 -0.474 0.959 1.063 0.362 0.65 S
283 G 0.885-0.499 0.959 1.063 0.351 0.65 S
284 D 0.884-0.516 0.999 1.014 0.441 0.90 T
285 M 0.895 -0.553 0.941 1.004 0.322 0.90 T
286 Y 0.908 -0.586 0.989 0.943 0.440 0.90 T
287 Q 0.921 -0.583 0.989 0.943 0.347 0.90 T
288 G 0.935 -0.576 0.981 1.003 0.484 0.90 T
289 L 0.944 -0.606 0.977 0.971 0.274 0.90 T
290 G 0.953-0.608 1.084 0.931 0.247 0.65
291 W 0.959 -0.619 1.089 0.963 0.221 0.65
292 E 0.950-0.628 1.137 0.940 0.265 0.65
293 M 0.934 -0.631 1.093 0.957 0.451 0.85
294 L 0.916 -0.622 1.087 0.917 0.276 0.85
295 N 0.902 -0.608 1.131 0.900 0.278 0.85
296 W 0.887-0.620 1.101 0.903 0.599 0.85 T
297 P 0.873-0.599 1.076 0.893 0.257 0.85 T
298 L 0.861 -0.580 1.039 0.850 0.292 0.85 T
299 K 0.861 -0.592 1.027 0.877 0.416 1.10 T
300 A 0.868-0.650 1.024 0.921 0.351 0.90
301 D 0.873 -0.653 1.089 1.037 0.355 0.65
302 S 0.871-0.644 1.031 1.000 0.258 0.65
303 I 0.871-0.631 0.936 1.021 0.420 1.10
304 I 0.869 -0.619 0.869 1.029 0.422 1.10
305 N 0.867-0.571 0.869 1.029 0.452 1.10 T
306 G 0.866-0.481 0.869 1.029 0.526 1.10 T
307 S 0.870 -0.400 0.906 0.931 0.450 1.10 T
308 D 0.887-0.326 0.897 0.937 0.411 1.10 T
309 S 0.922 -0.267 0.953 0.957 0.319 1.10 T
310 K 0.965 -0.244 1.059 0.971 0.208 0.65 T
311 V 1.013-0.227 1.071 1.049 0.227 0.65
312 A 1.062 -0.236 1.107 1.074 0.169 0.00
313 L 1.104 -0.268 1.176 1.084 0.214 0.60
314 V 1.130-0.284 1.074 1.066 0.242 0.60
315 A 1.137-0.294 1.129 0.981 0.177 0.85
316 L 1.122 -0.242 1.074 1.066 0.540 0.60
317 P 1.087-0.223 1.094 1.027 0.268 0.85
318 A 1.043-0.176 1.094 1.027 0.238 0.85
319 V 0.991 -0.164 1.039 1.007 0.239 0.85
320 E 0.941 -0.176 0.927 0.953 0.363 1.10
321 V 0.901 -0.196 0.927 0.953 0.247 1.10
322 N 0.873-0.258 0.927 0.953 0.644 1.10 T
323 P 0.858-0.303 0.871 0.831 0.596 1.10 T
324 P 0.863-0.379 0.850 0.853 0.270 1.10 T
325 A 0.874-0.455 0.850 0.853 0.539 1.10 T
326 P 0.889 -0.502 0.897 0.854 0.299 1.10
327 A 0.908-0.551 1.007 0.891 0.238 1.10
328 V 0.925-0.565 1.050 0.936 0.318 0.85
329 K 0.935 -0.587 1.007 0.970 0.423 0.90
330 A 0.941 -0.578 1.063 1.091 0.316 0.40
331 S 0.936-0.530 1.053 1.117 0.213 0.40
332 W 0.927-0.499 1.099 1.014 0.313 0.65
333 V 0.927-0.462 1.041 1.077 0.260 0.40
334 H 0.929 -0.454 0.937 1.080 0.472 0.65 T
335 K 0.936-0.422 0.937 1.080 0.459 0.85 T
336 T 0.950-0.392 0.914 1.090 0.375 0.85 T
337 G 0.970 -0.357 0.864 1.009 0.458 1.10 T
338 S 1.000 -0.317 0.770 0.986 0.570 1.10 T
339 T 1.038-0.276 0.747 1.064 0.426 0.85 T
340 G 1.070 -0.209 0.709 1.023 0.404 1.10 T
341 G 1.099 -0.162 0.746 1.027 0.439 1.10 T
342 F 1.121 -0.151 0.731 1.070 0.394 0.65
```

```
343 G 1.135 -0.167 0.743 1.110 0.408 0.65
344 S 1.138-0.188 0.847 1.107 0.269 0.65 S
345 Y 1.126 -0.206 0.920 1.164 0.230 0.65 S
346 V 1.097 -0.235 0.897 1.189 0.256 0.85 S
347 A 1.057-0.263 0.891 1.149 0.195 0.85 S
348 F 1.011 -0.264 0.980 1.120 0.205 0.85 S
349 V 0.966-0.237 1.053 1.051 0.625 0.60 ST
350 P 0.931 -0.215 1.051 0.947 0.325 0.85 ST
351 E 0.915 -0.211 1.053 0.964 0.432 0.85 T
352 K 0.915 -0.255 0.980 0.907 0.326 1.10 T
353 N 0.932 -0.309 0.989 0.901 0.432 0.90
354 L 0.964 -0.368 1.044 1.023 0.212 0.65
355 G 1.004 -0.444 1.049 1.054 0.217 0.40
356 I 1.038-0.540 1.059 1.090 0.175 0.40
357 V 1.055 -0.598 1.114 1.110 0.238 0.40
358 M 1.043-0.580 1.057 1.073 0.219 0.60
359 L 1.011 -0.565 1.153 1.051 0.423 0.60
360 A 0.964 -0.541 1.131 0.980 0.321 0.85
361 N 0.906 -0.531 1.104 0.946 0.526 0.85 T
362 K 0.842 -0.513 0.969 0.899 0.376 1.10 T
363 S 0.781 -0.520 0.911 0.861 0.310 1.10 T
364 Y 0.739 -0.577 0.801 0.824 0.732 1.10 T
365 P 0.723-0.661 0.803 0.929 0.272 1.10 T
366 N 0.721 -0.738 0.764 0.960 0.663 1.10 T
367 P 0.734 -0.761 0.777 1.037 0.302 1.10 T
368 V 0.757 -0.771 0.880 0.966 0.258 1.10 T
369 R 0.794 -0.807 0.990 1.003 0.253 1.10 T
370 V 0.832 -0.821 1.046 1.023 0.215 0.25
371 E 0.863-0.814 1.113 1.094 0.334 0.00 S
372 A 0.880-0.801 1.120 1.023 0.285 0.25 S
373 A 0.895 -0.600 1.121 1.089 0.228 0.00 S
374 W 0.895-0.600 1.177 1.021 0.266 0.25 S
375 R 0.887 -0.600 1.177 1.021 0.204 0.25 S
376 I 0.868-0.600 1.169 1.003 0.240 0.25 S
377 L 0.846-0.600 1.170 1.020 0.263 0.25 S
378 E 0.824 -0.600 1.210 0.971 0.305 0.25 S
379 K 0.816 -0.600 1.073 0.830 0.117 0.25
380 L 0.797-0.600 1.048 0.668 0.000 0.25
381 Q 0.791 -0.600 0.857 0.607 0.000 0.50
382 * 0.830-0.600 0.000 0.000 0.000 1.40
```

Figure 18. Secondary structure of wild-type BLA CMY 2 and mutated variant

CHAPTER 4. DISCUSSION

Reviewing the literature for mutations of bla-cmy-2 at nucleotides 833 and 941 and amino acids 277 and 313 revealed the following. In an article published in 2003, researchers used "error-prone polymerase Mutazyme in a PCR reaction" in an attempt to find potential mutations in CMY-2 that would confer cefepime resistance (Barlow 2003). Seven strains expressing mutated CMY-2 were published (Barlow 2003). One of these strains that exhibited cefepime resistance at $32 \mu \mathrm{~g} / \mathrm{ml}$ had two mutations at nucleotides 932 and 941 (Barlow 2003). Although nucleotide 941 was mutated, it did not cause a mutation at amino acid 313 in this study (Barlow 2003). There was no potential explanation given in this article regarding the increase in cefepime resistance.

A 2009 article may explain some of the increase in cefepime resistance in this research strain. The article described two bla-cmy-2 variants: bla-cmy- 33 and bla-cmy44 (Doi 2009). These two variants have " 12 - to 24 -fold increases in the MICs of cefepime" (Doi 2009). The article attributes this increased cefepime resistance to amino acid deletions in the sequence in proximity to the $\mathrm{H}-10$ helix or R 2 loop (Doi 2009). The structure of the beta-lactamase resulting from these sequence alterations allows the enzyme to interact with cephalosporin drugs with larger R2 side chains (Doi 2009). The R2 loop occurs at amino acids 289-307 (Kim 2006). Although the amino acid mutations of this research strain at 277 and 313 are outside of the sequences involved in the loop, their proximity and location on either side of the loop spark interest for further investigation. Reviewing the secondary structure of the research strain indicated that a structural alteration occurred in the sequence corresponding to the mutation at amino acid 277.

In conclusion, mutations occurring from natural evolution are more likely to occur individually (Barlow 2003). The research strain that displayed cefepime resistance contained two mutations, one of which is conserved, implying non-viability under natural conditions. If, however, these mutations were able to occur and persist in nature, it would be reasonable that the non-conserved mutation at amino acid 277 would occur first. Perhaps non-conserved mutations in proximity to the $\mathrm{H}-10$ helix are sentinels of cefepime resistance. In any case, bacterial resistance to cefepime does occur, even though at present, it is only observed in the laboratory.

BIBLIOGRAPHY

(1) Abraham EP. 1979 Jan-Feb. A glimpse of the early history of the cephalosporins. Rev Infect Dis.;1(1):99-105
(2) Abu Amar M. Al Mamun, Kenneth J. Marians and M. Zafri Humayun. November 29, 2002. DNA Polymerase III from Escherichia coliCells Expressing mutA Mistranslator tRNA Is Error-prone The Journal of Biological Chemistry, 277: 46319-46327.
(3) Abdelmadjid Atrih, Gerold Allmaier, Micheal P. Willimson and Simon J. Foster. July 1999. Analysis of Peptidoglycan structure from vegetative Cells of Bacillus subtilis168 and Role of PBP 5 in peptidoglycan maturation; Journal of Bacteriology, Vol 181 No 13: p. 3956-3966
(4) Zeynep Baharoglu, David Bikard, and Didier Mazel. 2010 October. Conjugative DNA Transfer Induces the Bacterial SOS Response and Promotes Antibiotic Resistance Development through Integron Activation. PLoS Genet.; 6(10): e1001165.
(5) Miriam Barlow and Barry G. Hall. May 2003. Experimental Prediction of the Evolution of Cefepime Resistance From CMY-2 ampC Beta-Lactamase. Genetics, Vol 164 :pg23-29
(6) Jeremy M. Berg, John L. Tymoczko and Lubert Stryer. 2007. Biochemistry $6^{\text {th }}$ ed.,W. H. Freeman and Company, New York
(7) A Bauernfeind, I Stemplinger, R Jungwirth and H Giamarellou. Jan 1996. Characterization of the plasmidic beta-lactamase CMY-2, which is responsible for cephamycin resistance. Antimicrobial Agents and Chemotherapy, Vol 40, No. 1: 221-224
(8) Bush K, Jacoby GA, Medeiros AA.1995. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother., 39: 1211-33
(9) K Bush. 1988 January. Beta-lactamase inhibitors from laboratory to clinic; Clin Microbiol Rev.; 1(1): 109-123.
(10) Peter M. J. BurgerstOaFNb, Eugene V. KoonintOc, Elspeth BrufordtOd, Luis BlancotOe, Kenneth C. BurtistOf, Michael F. ChristmantOg, William C.
CopelandtOh, Errol C. Friedbergi, Fumio HanaokatOj, David C. HinkletOk, Christopher W. LawrencetOl, Makoto Nakanishim, Haruo OhmoritOn, Louise PrakashtOo, Satya PrakashtOo, Claude-Agnes ReynaudtOp, Akio SuginotOq, Takeshi TodotOr, Zhigang WangtOs, Jean-Claude WeilltOp and Roger WoodgatetOt. November 23, 2001. Eukaryotic DNA Polymerases: Proposal for a Revised Nomenclature. The Journal of Biological Chemistry: 276
(11) H. Carsenti-Etesse, J. D. Cavallo, P. M. Roger, I. Ziha-Zarifi, P. Plesiat, E. Garrabé, P. Dellamonica. March 2001. Effect of β-lactam antibiotics on the in vitro development of resistance in Pseudomonas aeruginos. Clinical microbiology and infection: volume 7 , issue 3, 144-151.
(12) Christian Chalut, Xavier Charpentier, Marie-Hélène Remy, and Jean-Michel Masson. January 2001. Differential Responses of Escherichia coli Cells Expressing Cytoplasmic Domain Mutants of Penicillin-Binding Protein 1 b after

Impairment of Penicillin-Binding Proteins 1a and 3. Journal of Bacteriology: Vol. 183, No. 1, p. 200-206,
(13) Marie-Kim Chaveroche, Jean-Marc Ghigo1 and Christophe d'Enfert. A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Oxford JournalsLife Sciences. Nucleic Acids Research: Volume28, Issue22Pp. e97.
(14) Yu Chen, Andrea McReynolds, and Brian K Shoichet. March 2009. Reexamining the role of Lys67 in class C β-lactamase catalysis. Protein Sci.: 18(3), p. 662-669
(15) Joshua B. Daniels, Douglas R. Call, and Thomas E. Besser. December 2007. Molecular Epidemiology of bla CMY-2 Plasmids Carried by Salmonella enterica and Escherichia coli Isolates from Cattle in the Pacific Northwest. Applied and Environmental Microbiology: Vol. 73, No. 24 p. 8005-8011
(16) Frank B Dean, John R Nelson, Theresa L Giesler and Roger S Lasken. 2009. Rapid Amplification of Plasmid and Phage DNA Using Phi29 DNA polymerase and multiple-primed Rolling Circle Amplification. Genome Res: 11:1095-1099
(17) Yohei Doi, David L. Paterson, Jennifer M. Adams-Haduch, Hanna E. Sidjabat, Alexandra O'Keefe, Andrea Endimiani, and Robert A. Bonomo. July 2009. Reduced Susceptibility to Cefepime among Escherichia coli Clinical Isolates Producing Novel Variants of CMY-2 β-Lactamase. Antimicrobial Agents and Chemotherapy: Vol. 53, No. 7 p. 3159-3161,
(18) Andrea Endimiani, Federico Perez and Robert A Bonomo. Dec 2008. Cefepime: a reappraisal in an era of increasing antimicrobial resistance. NIH Expert Rev Anti Infect Ther.: 6(6): 805-824
(19) Ekaterina G. Frank and Roger Woodgate. August 24, 2007. Increased Catalytic Activity and Altered Fidelity of Human DNA Polymerase 1 in the Presence of Manganese. The Journal of Biological Chemistry: 282, 24689-24696.
(20) Ryota Fuji, Motomitsu Kitaoka and Kiyoshi Hayashi. 2004. One-step random mutagenesis by error-prone rolling circle amplification. Nucleic Acids Res.: 32(19):e145
(21) Ryota Fuji, Motomitsu Kitaoka and Kiyoshi Hayashi. 2006. Error-prone rolling circle amplification: the simplest random mutagenesis protocol. Natural Protocols: 1,2493-2497
(22) Javier Garau, Walter Wilson, Martin Wood, and Jean Carlet. Oct 2008. Fourthgeneration cephalosporin: a review of in vitro activity, pharmacokinetics, pharmacodynamics and clinical utility. Clinical Microbiology and Infection: Volume 3, Issue s1, Pg s87-s 101
(23) Giamarellou H. Dec 1999. Fourth generation cephalosporins in the antimicrobial chemotherapy of surgical infections. J Chemotherapy: 11(6): pg 486-493.
(24) Ghosh AS, Chowdhury C, Nelson DE. July 2008. Physiological functions of Dalanine carboxypeptidases in Escherichia coli. Trends Microbiol.: 16(7):309-17. Epub 2008 Jun 5.
(25) Hamdan S, Bulloch EM, Thompson PR, Beck JL, Yang JY, Crowther JA, Lilley PE, Carr PD, Ollis DL, Brown SE, Dixon NE. Apr 2002. Hydrolysis of the 5'-pnitrophenyl ester of TMP by the proofreading exonuclease (epsilon) subunit of Escherichia coli DNA polymerase III. Biochemistry.: 41(16):5266-75.

Hata M, Tanaka Y, Fujii Y, Hoshino T, Neya S . Sep14-17, 2003 Deacylation Mechanism of Class C Beta-Lactamase; Interscience Conference on
Antimicrobial Agents and Chemotherapy (43rd: 2003: Chicago, Ill.). Abstr Intersci Conf Antimicrob Agents Chemother Intersci Conf Antimicrob Agents Chemother.: 43: abstract no. C1-673.
(27) M. Hedberg, L. Lindqvist, K. Tunér and C.E. Nord.1992. Effect of clavulanic acid, sulbactam and tazobactam on three different β-lactamases from Bacteroides uniformis, Clostridium butyricwn and Fusobacterium nucleatum. J. Antimicrob. Chemother. 30 (1): 17-25.
(28) Higurashi Y, Okuzumi K, Yoneyama A and Nakahara K. 1997 Dec. The in Vitro Antibacterial Activity of Cefozopran Against Clinically Isolated Bacteria. Japanese Journal of Antibiotics, 50(12); 907-916
(29) Kayo Ikeda, Kazuro Ikawa, Norifumi Morikawa, Hiroki Ohge and Taijiro Sueda. 2009. Determination of total cefozopran concentrations in human peritoneal fluid by HPLC with Cefepime as an internal standard: Comparative pharmacokinetics in the fluid and plasma. Journal of Pharmaceutical and Biomedical Analysis vol49: 1075-1081
(30) George A. Jacoby. January 2009. AmpC β-LactamasesClinical. Microbiology Reviews, Vol. 22, No. 1: p. 161-182
(31) Jae Young Kim,Ha ll Jung, Young Jun An, Jung Hun Lee, So Jung Kim, Seok Hoon Jeong, Kye Joon Lee, Pann-Ghill Suh, Heung-Soo Lee, Sang Hee Lee, and Sun-Shin Cha. 2006. Structural basis for the extended substrate spectrum of CMY-10, a plamid-encoded class C Beta-lactamase. Molecular Microbiology 60(4): 907-916
(32) Kim DJ, King JA, Zuccarelli L, Ferris CF, Koppel GA, Snowdon CT, Ahn CH. 2009 Aug. Clavulanic acid: a competitive inhibitor of beta-lactamases with novel anxiolytic-like activity and minimal side effects. Pharmacol Biochem Behav.;93(2):112-20.
(33) Marie-Frédérique Lartigue, Laurent Poirel, Daniel Aubert, and Patrice Nordmann. 2006 April. In Vitro Analysis of ISEcp1B-Mediated Mobilization of Naturally Occurring β-Lactamase Gene bla CTX-м of Kluyvera ascorbata .Antimicrob Agents Chemother.; 50(4): 1282-1286.
(34) Mainardi JL, Fourgeaud M, Hugonnet JE, Dubost L, Brouard JP, Ouazzani J, Rice LB, Gutmann L, Arthur MJ. 2005 Nov 18. Novel Peptidoglycan CrossLinking Enzyme for a Beta-lactam-resistant Transpeptidation Pathway. Biol Chem.280(46): pg38146-38152.
(35) Hedi Mammeri, Laurent Poirel, Nicolas Fortineau, and Patrice Nordmann. July 2006. Naturally Occurring Extended-Spectrum Cephalosporinases in Escherichia coli. Antimicrobial Agents and Chemotherapy Vol. 50, No. 7: p. 2573-2576
Bernadette M. Meberg, Avery L. Paulson, Richa Priyadarshini, and Kevin D. Young. 2004 December. Endopeptidase Penicillin-Binding Proteins 4 and 7 Play Auxiliary Roles in Determining Uniform Morphology of Escherichia coli. J Bacteriol. 186(24): 8326-8336.
(37) The Merk Manuals online medical library (2009)
(38) Bartolomé Moya, Andreas Dötsch, Carlos Juan, Jesús Blázquez, Laura Zamorano, Susanne Haussler, and Antonio Oliver. 2009 March. β-Lactam Resistance

Response Triggered by Inactivation of a Nonessential Penicillin-Binding Protein. PLoS Pathog.; 5(3): e1000353
(39) Ryuichi Nakano, Ryoichi Okamoto, Yumiko Nakano, Kenichi Kaneko, Naohiro Okitsu, Yoshio Hosaka, and Matsuhisa Inoue. April 2004. CFE-1, a Novel Plasmid-Encoded AmpC β-Lactamase with an $a m p R$ Gene Originating from Citrobacter freundii. Antimicrobial Agents and Chemotherapy, Vol. 48, No. 4: p. 1151-1158
(40) David E. Nelson and Kevin D. Young. May 2001. Contributions of PBP 5 and DD-Carboxypeptidase Penicillin Binding Proteins to Maintenance of Cell Shape in Escherichia coli. Journal of Bacteriology. Vol. 183, No. 10: p. 3055-3064
(41) Neu Hc. 1986 Jul-Aug. Beta-lactam antibiotics: structural relationships affecting in vitro activity and pharmacologic properties. Rev Infect Dis; 8 Suppl 3:S237-59
(42) V. k. Nigam, S. Kundu, and P. Ghosh. 2005. Single-step conversion of cephalosporin-c to 7-Aminocephalospranic acid by free and immobilized cells of Pseudomonas diminuta. Applied biochemistry and biotechnology, vol 126, No 1: pg 13-21
(43) Abe Noriyuki, Komatsu Masaru, Iwasaki Mizuho, Nagasaka Yoko, Fukuda Saori, Matsuo Shuji, Shimakawa Koichi. 2005. In vitro activity Agents against clinical isolates of Pseudomonas aeruginosa. Japanese Journal of antibiotics, vo 58, no 5: pg 445-451
(44) Sridhar Peddi, Robert A. Nicholas, and William G. Gutheil. 2009 June 23. Neisseria gonorrhoeae Penicillin-Binding Protein 3 Demonstrates a Pronounced Preference for N^{t}-Acylated Substrates Biochemistry.; 48(24): 5731-5737.
(45) Alain Philippon, Guillaume Arlet, and George A. Jacoby. 2002 January. PlasmidDetermined AmpC-Type β-Lactamases. Antimicrob Agents Chemother.; 46(1): 1-11
(46) Reiner R. 1986. Correlation between structure and biological properties of cephalosporins: the discovery of ceftriaxone. Drugs Exp Clin Res., 12(4):299-302
(47) Roche G. 1989 Oct 11. Cefixime, the first oral third-generation cephalosporin. Presse Med.; vol 18(32):1541-4
(48) MA Sirover and LA Loeb. December. 1976. Infidelity of DNA synthesis in vitro: screening for potential metal mutagens or carcinogens. Science 24: Vol. 194 no. 4272 pp. 1434-1436
(49) Keith A. Stubbs , Misty Balcewich, Brian L. Mark and David J. Vocadlo. July 20, 2007. Small Molecule Inhibitors of a Glycoside Hydrolase Attenuate Inducible AmpC-mediated β-Lactam Resistance. The Journal of Biological Chemistry, vol 282: 21382-21391
(50) Sutherland R.J. 1990 Mar. Development of beta-lactamase inhibitors. Med.Reprod vol 35(3 Suppl):307-12..
(51) Joshua D. Tompkins, Jennifer L. Nelson, Jill C. Hazel, Stacy L. Leugers, Jeffrey D. Stumpf, and Patricia L. Foster. June 2003. Error-Prone Polymerase, DNA Polymerase IV, Is Responsible for Transient Hypermutation during Adaptive Mutation in Escherichia coli. Journal of Bacteriology, Vol. 185, No. 11: pg 34693472,
(52) Watanabe NA. 1996. Newer antipseudomonal cephalosporins. J chemother. 1996 Feb 8 Suppl 2: pg 48-56.
(53) Yahav D., Fraser A.,Sarid N.,Leibovici L. 2008 Aug. Is Cefepime Safe?. Cleveland Clinic Journal of Medicine: Vol 75 No 8: Pg 585-586
(54) Richard A. Zakour, Thomas A. Kunkel, and Lawrence A. Loeb. 1981. MetalInduced Infidelity of DNA Synthesis. Environmental Health Perspectives Vol. 40: pp. 197-205

